Большая Советская Энциклопедия (КИ)
Большая Советская Энциклопедия (КИ) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Кислородное голодание
Кислоро'дное голода'ние, кислородная недостаточность, состояние организма, характеризующееся тем, что поступление O2 к тканям и органам или их способность утилизировать O2 ниже потребностей животного или человека в кислороде; то же, что гипоксия .
Кислородно-конвертерная сталь
Кислоро'дно-конве'ртерная ста'ль, сталь, выплавляемая в кислородных конвертерах; см. Сталь .
Кислородно-конвертерный процесс
Кислоро'дно-конве'ртерный проце'сс, один из видов передела жидкого чугуна в сталь без затраты топлива путём продувки чугуна в конвертере технически чистым кислородом сверху. О целесообразности использования кислорода при производстве стали в конвертерах указывал ещё в 1876 русский металлург Д. К. Чернов . Впервые применил чистый кислород для продувки жидкого чугуна снизу советский инженер Н. И. Мозговой в 1936. В 1939—41 на Московском заводе станкоконструкций проводились опыты по продувке чугуна сверху кислородом в 1,5-т ковше и выплавлялась сталь для фасонного литья. Впервые К.-к. п. был опробован в промышленном масштабе в Австрии в 1952. Первый кислородно-конвертерный цех в СССР был введён в эксплуатацию в Днепропетровске на металлургическом заводе им. Петровского в 1956.
К.-к. п. осуществляется в конвертере с основной смолодоломитовой (доломит, смешанный со смолой) футеровкой и с глухим дном; кислород под давлением более 1 Мн/м2 (10 кгс/см2 ) подаётся водо-охлаждаемой фурмой через горловину конвертера. С целью образования основного шлака, связывающего фосфор, в конвертер в начале продувки добавляют известь. Под воздействием дутья примеси чугуна (кремний, марганец, углерод и др.) окисляются, выделяя значительное количество тепла, в результате чего одновременно снижается содержание примесей в металле и повышается температура, поддерживая его в жидком состоянии. Когда содержание углерода достигает требуемого значения (количество углерода определяется по времени от начала продувки и по количеству израсходованного кислорода), продувку прекращают и фурму извлекают из конвертера. Продувка обычно длится 15—22 мин. Полученный металл содержит в растворе избыток кислорода, поэтому заключительная стадия плавки — раскисление металла . Течение К.-к. п. (т. е. последовательность реакций окисления примесей чугуна) обусловливается температурным режимом процесса и регулируется изменением количества дутья или введением в конвертер «охладителей» (скрапа , железной руды, известняка). Температура металла при выпуске около 1600 °С. На приведена схема получения стали в кислородном конвертере.
Применение при конвертировании кислородного дутья вместо воздушного (см. Бессемеровский процесс , Томасовский процесс ) позволило получать сталь с низким содержанием азота (0,002—0,006%). Высокая температура К.-к. п. способствует интенсивному окислению углерода, поэтому содержание кислорода, растворенного в металле, снижается до 0,005—0,01%. Расход кислорода на 1 т чугуна при К.-к. п. составляет » 53 м3 . При одном и том же качестве стали К.-к. п. по сравнению с мартеновским (см. Мартеновское производство ) даёт экономию по капиталовложениям на 20—25%, снижение себестоимости стали на 2—4% и увеличение производительности труда на 25—30%. В СССР за 1965—71 выплавка стали в кислородных конвертерах увеличена с 4 до 23,2 млн. т в год, или в 5,8 раза. Рост производства конвертерной стали сопровождается ростом ёмкости конвертеров. С технологической точки зрения, увеличение емкости конвертера не создает каких-либо дополнительных трудностей ведения плавки. Поэтому даже в крупных конвертерах выплавляют не только рядовую низкоуглеродистую сталь, но и среднеуглеродистую, высокоуглеродистую, низколегированную и легированную стали.
Лит.: Применение кислорода в конвертерном производстве стали, М., 1959; Туркенич Д. И., Автоматизация процесса плавки в кислородном конвертере, [М.], 1966: Бережинский А. И., Хомутинников П. С., Утилизация, охлаждение и очистка конвертерных газов, М., 1967; Явойский В. И., Теория процессов производства стали, 2 изд., М.. 1967; Конвертерные процессы производства стали, М., 1970.
С. Г. Афанасьев.
Схема получения стали в кислородном конвертере: а — загрузка металлолома; б — заливка чугуна; в — продувка; г — выпуск стали; д — слив шлака.
Кислородный конвертер
Кислоро'дный конве'ртер. см. Конвертер .
Кислородный эффект
Кислоро'дный эффе'кт в радиобиологии, защитное действие пониженного содержания кислорода (гипоксии ) при облучении живых организмов ионизирующей радиацией. К. э. проявляется у всех биологических объектов (микроорганизмы, растения, животные) и на всех уровнях их организации (субклеточном, клеточном, тканевом, органном и организменном), значительно ослабляя все радиобиологические реакции (биохимические нарушения, мутации , угнетение роста и развития) и повышая выживаемость облученных организмов. Механизм защитного действия гипоксии объясняется тем, что при облучении в присутствии кислорода образуются перекисные радикалы, усиливающие действие излучений на жизненно важные макромолекулы и структуры клеток и (или) ослабляющие эффективность внутриклеточных защитных веществ. Величина К. э. зависит главным образом от вида радиации и условий облучения. Наибольший К. э. наблюдается при действии рентгеновских лучей и гамма-лучей; с ростом плотности ионизации К. э. уменьшается, а при действии наиболее плотно ионизирующих излучений (например, альфа-лучей) практически отсутствует. В нормально обводненных активно жизнедеятельных биологических объектах ослабление лучевого поражения имеет место только при применении гипоксии во время облучения, в сухих объектах (покоящиеся семена растений, споры бактерий) — и при гипоксии после облучения, во время перехода облученных объектов к активной жизнедеятельности (например, при проращивании семян). К. э. находит применение в лучевой терапии : повышая содержание кислорода в опухоли и создавая гипоксические условия в окружающих тканях, можно усиливать лучевое поражение опухолевых клеток, одновременно уменьшая повреждение здоровых тканей.
Лит.: Кислородный эффект при действии ионизирующих излучений, М., 1959; Бак З., Александер П., Основы радиобиологии, пер. с англ., М., 1963.
В. И. Иванов.
Кислотность почвы
Кисло'тность по'чвы, одно из важнейших свойств многих почв, обусловленное наличием водородных ионов в почвенном растворе, а также обменных ионов водорода и алюминия в почвенном поглощающем комплексе. Повышенная К. п. отрицательно влияет на развитие растений и многих полезных микроорганизмов. Различают 2 формы К. п.: актуальную, или активную, — кислотность почвенного раствора, почвенной суспензии или водной вытяжки из почв, и потенциальную, или пассивную, «скрытую», — кислотность твёрдой фазы почвы. Актуальная К. п. обусловлена наличием ионов водорода. Выражается условной величиной pH (отрицательный логарифм концентрации водородных ионов); при pH 7 реакция почвенного раствора нейтральная, ниже 7 — кислая; чем ниже числовое значение рН, тем выше К. п. Потенциальную К. п. делят на обменную и гидролитическую. Обменная К. п. вызывает значительное подкисление почвенного раствора при взаимодействии почвы с нейтральной солью, что наблюдается при внесении физиологически кислых удобрений (хлористый калий, сернокислый аммоний и др.). По представлениям русского учёного К. К. Гедройца и некоторых других исследователей, обменная К. п. обусловлена присутствием в твердой фазе почвы ионов водорода, не вытесняемых нейтральными солями из поглощаемого комплекса, но способных к замещению (обмену) на другие катионы при обработке почвы растворами щелочей или гидролитически щелочных солей (например, раствором ацетата натрия, который и применяется при определении гидролитической кислотности). Степень К. п. необходимо учитывать при выборе минеральных удобрений, подготовке их перед внесением в почву. Основной способ борьбы с повышенной К. п. — известкование почв .