Большая Советская Энциклопедия (ДИ)
Большая Советская Энциклопедия (ДИ) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
y' = f (x, у). (Б)
Многие вопросы теории Д. у. проще рассматривать для таких разрешённых относительно производной уравнений, предполагая функцию f (x, y) однозначной.
Уравнение (Б) можно записать в виде соотношения между дифференциалами
f (x, y) dx - dy = 0,
тогда оно становится частным случаем уравнений вида
Р (х, у) dx + Q (x, у) dy = 0. (В)
В уравнениях вида (В) естественно считать переменные х и у равноправными, т. е. не интересоваться тем, какое из них является независимым.
Геометрическая интерпретация дифференциальных уравнений. Пусть у = у (х) есть решение уравнения (Б). Геометрически это значит, что в прямоугольных координатах касательная к кривой у = у (х) имеет в каждой лежащей на ней точке М (х, у) угловой коэффициент k = f (x, у). Т. о., нахождение решений у = у (х) геометрически сводится к такой задаче: в каждой точке некоторой области на плоскости задано «направление», требуется найти все кривые, которые в любой своей точке М имеют направление, заранее сопоставленное этой точке. Если функция f (x, у) непрерывна, то это направление меняется при перемещении точки М непрерывно, и можно наглядно изобразить поле направлений, проведя в достаточно большом числе достаточно густо расположенных по всей рассматриваемой области точек короткие чёрточки с заданным для этих точек направлением. На рис. 2 это выполнено для уравнения у' = у2. Рисунок позволяет сразу представить себе, как должны выглядеть графики решения — так называемые интегральные кривые Д. у. Вычисление показывает, что общее решение данного уравнения есть
На рис. 2 вычерчены интегральные кривые, соответствующие значениям параметра С = 0 и С = 1.
График любой однозначной функции у = у (х) пересекает каждую прямую, параллельную оси Оу, только один раз. Таковы, следовательно, интегральные кривые любого уравнения (Б) с однозначной непрерывной функцией в правой части. Новые возможности для вида интегральных кривых открываются при переходе к уравнениям (В). При помощи пары непрерывных функций Р (х, у) и Q (x, у) можно задать любое непрерывное «поле направлений». Задача интегрирования уравнений (В) совпадает с чисто геометрической (не зависящей от выбора осей координат) задачей разыскания интегральных кривых по заданному на плоскости полю направлений. Следует заметить, что тем точкам (x, у), в которых обе функции Р (х, у) и Q (x, у) обращаются в нуль, не соответствует какое-либо определённое направление. Такие точки называются особыми точками уравнения (В).
Пусть, например, задано уравнение
ydx + xdy = 0,
которое можно записать в виде
хотя, строго говоря, правая часть этого последнего уравнения теряет смысл при х = 0 и у = 0. Соответствующие поле направлений и семейство интегральных кривых, являющихся в этом случае окружностями х2 + у2 = С, изображены на рис. 3. Начало координат (х = 0, у = 0) — особая точка данного уравнения. Интегральными кривыми уравнения
ydx - xdy = 0,
изображёнными на рис. 4, являются всевозможные прямолинейные лучи, выходящие из начала координат; начало координат является особой точкой и этого уравнения.
Начальные условия. Геометрическая интерпретация Д. у. 1-го порядка приводит к мысли, что через каждую внутреннюю точку М области G с заданным непрерывным полем направлений можно провести одну вполне определённую интегральную кривую.
В отношении существования интегральной кривой сформулированная гипотеза оказывается правильной. Доказательство этого предложения принадлежит Дж. Пеано. В отношении же единственности интегральной кривой, проходящей через заданную точку, высказанная выше гипотеза оказывается, вообще говоря, ошибочной. Уже для такого простого уравнения, как
у которого правая часть непрерывна во всей плоскости, интегральные кривые имеют вид, изображённый на рис. 5. Единственность интегральной кривой, проходящей через заданную точку, нарушается здесь во всех точках оси Ox.
Единственность, т. е. однозначное определение интегральной кривой условием её прохождения через заданную точку, имеет место для уравнений (Б) с непрерывной правой частью при том дополнительном условии, что функция f (х, у) имеет в рассматриваемой области ограниченную производную по у.
Это требование является частным случаем следующего, несколько более широкого условия Липшица: существует такая постоянная L, что в рассматриваемой области всегда
|f (x, y1) - f (x, y2)| < L |у1 – у2|.
Это условие чаще всего приводится в учебниках как достаточное условие единственности.
С аналитической стороны теоремы существования и единственности для уравнения вида (Б) обозначают следующее: если выполнены надлежащие условия [например, функция f (x, y) непрерывна и имеет ограниченную производную по у], то задание для «начального» значения x независимого переменного х «начального» значения у = у (x) функции у (х) выделяет из семейства всех решений у (х) одно определённое решение. Например, если для рассмотренного выше уравнения (1) потребовать, чтобы в начальный момент времени t = 0 температура тела была равна «начальному» значению Т, то из бесконечного семейства решений (2) выделится одно определённое решение, удовлетворяющее заданным начальным условиям:
T (t) = Te-kt.
Этот пример типичен: в механике и физике Д. у. обычно определяют общие законы течения какого-либо явления; однако, чтобы получить из этих законов определённые количественные результаты, надо присоединить к ним сведения о начальном состоянии изучаемой физической системы в некоторый определённый выбранный в качестве «начального» момент времени t.
Если условия единственности выполнены, то решение y (x), удовлетворяющее условию у (x) = у, можно записать в виде:
y (x) = j(x; х, у), (5)
где x и у входят как параметры, функция же j (х; x, y) трёх переменных х, x и y однозначно определяется самим уравнением (Б). Важно отметить, что при достаточно малом изменении поля (правой части Д. у.) функция j(х; x, у) меняется сколь угодно мало на конечном промежутке изменения переменного х — имеется непрерывная зависимость решения от правой части Д. у. Если правая часть f (x, у) Д. у. непрерывна и её производная по у ограничена (или удовлетворяет условию Липшица), то имеет место также непрерывность j(х; х, у) по x и y.