-->

Энциклопедический словарь (Х-Я)

На нашем литературном портале можно бесплатно читать книгу Энциклопедический словарь (Х-Я), Брокгауз Фридрих Арнольд-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Энциклопедический словарь (Х-Я)
Название: Энциклопедический словарь (Х-Я)
Дата добавления: 16 январь 2020
Количество просмотров: 231
Читать онлайн

Энциклопедический словарь (Х-Я) читать книгу онлайн

Энциклопедический словарь (Х-Я) - читать бесплатно онлайн , автор Брокгауз Фридрих Арнольд

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Эзоп

Эзоп — родоначальник названной по его имени «Эзоповой» басни. По древнейшему преданию, он жил около середины VI в. до Р. Хр., был рабом самосца Иадмона и умер насильственной смертью в Дельфах. Позднее его родиной называли Малую Азию, что вполне правдоподобно, так как с этим согласуется характер его имени. Его смерть в Дельфах была украшена легендой, которую можно восстановить по Геродоту и Аристофану, комбинируя их с более поздними свидетельствами. Согласно этой легенде Э., находясь в Дельфах, своим злословием возбудил против себя нескольких граждан, и они решили наказать его. Для этого они, похитив золотую чашу из храмовой утвари, тайно вложили ее в котомку Э. и затем забили тревогу; приказано было обыскать богомольцев, чаша была найдена у Э., и он, как святотатец, был побит камнями. Через много лет последовало чудесное. обнаружение невинности Э.; потомки его убийц были вынуждены уплатить виру, за получением которой явился внук того Иадмона, который был его господином. Историческое ядро этой легенды заключается в отношении Дельфов, этого средоточия поэзии VI в., к Эзоповой басне: будучи вначале враждебным, оно со временем стало дружественным, т. е. Дельфы сочли за лучшее принять под свое покровительство этот популярный и влиятельный тип повествовательной поэзии. — Что касается до самой Эзоповой басни, то под этим именем древние разумели ту, в которой действующими лицами выступали животные и др. бессловесные существа и предметы. Другой разновидностью была так назыв. сибаритская басня, в которой выступали люди; кроме того, были еще басни ливийские, египетские, кипрские, карийские, киликийские. Поименованные местности все лежат на окраинах (западной, южной, восточной) греческого миpa; это стоит в связи с часто замеченным фактом, что произведения народной словесности лучше сохраняются и раньше обращают на себя внимание именно на окраинах, где антагонизм с иными народностями заставляет более дорожить сокровищницей национальных преданий. Согласно этому мы и во фригийце Э. должны будем видеть просто собирателя и пересказчика греческих басен; его популярность была причиной того, что всякая басня «эзопического» характера была приписываема ему. Есть основание предполагать, что в эпоху Аристофана (конец V в.) в Афинах был известен письменный сборник Эзоповых басен, по которому учили детей в школе; «ты невежда и лентяй, даже Э. не выучил!», говорит у Аристофана, одно действующее лицо. Это были прозаические пересказы, безо всякой художественной отделки. Признание Э. Дельфами было для поэтов косвенным призывом внести в поэтическую литературу этот заброшенный вид народной словесности; откликнулся на него Сократ, под влиянием того мистического настроения, в котором он, как избранник дельфийского Аполлона, провел последние дни своей жизни. Переделки Сократа не сохранились для потомства; мнимые отрывки из них подложны. Свод Эзоповых басен в прозе составил в конце IV в. Димитрий Фалерский. До нас из древности дошли лишь вольные поэтические переделки Бабрия (III в. по Р. Хр.) на греческом, Федра (I в. по Р. Хр.) и Авиена (IV в. по Р. Хр.) — на латинском яз.; те же сухие прозаические пересказы, которые озаглавлены в рукописях, как «Эзоповы басни», все составлены в средние века. — интерес к басням Э. переносился и на его личность; за неимением достоверных сведений о нем прибегали к легенде. Фригийский краснобай, иносказательно поносивший сильных мира сего, естественно представлялся человеком сварливым и злобным, на подобие Гомеровского Ферсита, а потому и портрет Ферсита, подробно изображенный Гомером, был перенесен и на Э. Его представляли горбатым, хромым, с лицом обезьяны — одним словом, во всех отношениях безобразным и прямо противоположным божественной красоте Аполлона; таким он изображался и в скульптуре, между прочим — в том интересном изваянии, которое до нас сохранилось. В средние века была сочинена в Византии анекдотическая биография Э., которая долго принималась за источник достоверных сведений о нем. Э. представлен здесь рабом, за бесценок продаваемым из рук в руки, постоянно обижаемым и товарищами рабами, и надсмотрщиками, и хозяевами, но умеющий удачно мстить своим обидчикам. Эта биография не только не вытекла из подлинной традиции об Э. — она даже и не греческого происхождения. Ее источник — еврейская повесть о мудром Акирии. принадлежащая к циклу легенд, которыми была окружена у позднейших евреев личность царя Соломона. Посредствующие звенья между этой повестью и византийской биографией Э. еще не обнаружены; сама повесть известна главным образом из древнеславянских переделок. Биография Э. получила широкую популярность и была рано переведена на многие языки, между прочим, на болгарский, турецкий и румынский.

Литература. История Эзоповой басни — один из самых чувствительных пробелов в истории античных литератур; ей должно предшествовать собрание всех сводов и отрывков Эзоповой басни, а это — очень трудная задача, которая вряд ли скоро найдет исполнителя. См. Keller, «Geschichte der griechischen Fabel» (1852). Лучшее издание басен — Halm (Лпц., у Teubner'a); биографии — Eberhard — «Fabulae Romanenses» (там же). Об Акирии ст. Ягича в «Byzantinische Zeitschrift» (1892); ср. также Лопарев, «Слово о св. Феостирикте» («Пам. древн. письменности» № 94). Ф. З.

Эйлер

Эйлер (Леонард Euler) — один из величайших математиков XVIII стол., род. в 1707 г., в Базеле. Отец его, Павел Э., был пастором в Рихене (близ Базеля) и имел некоторые познания в математике, приобретенные под руководством Якова Бернулли. Отец предназначал своего сына к духовной карьере, но сам интересуясь математикой, преподавал ее и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончании домашнего обучения молодой Э. был отправлен отцом в Базель для слушания философии. Обладая отличною памятью, Э. скоро и легко усвоил себе этот предмет и нашел время поближе ознакомиться с тем, к чему его влекло призвание. т. е. с геометрией и математическими предметами. Профессор Иоанн Бернулли очень скоро обратил внимание на Э. и нашел в нем необыкновенный талант. Он предложил молодому человеку заниматься с ним отдельно в особые часы для разъяснения неясностей и затруднений, которые встречались в сочинениях, рекомендуемых профессором Э. +для изучения. Получив в 1723 г. степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Э., по желанию отца своего, приступил к изучению восточных языков и богословия. Способности его преодолели и эти предметы, но влечение к математическим наукам развивалось все более и более. Частые беседы с Иоанном Бернулли о вопросах математических в кругу семейства профессора дали Э. случай познакомиться с двумя сыновьями Иоанна, а именно Николаем и Даниилом Бернулли. Общее влечение к математике соединило их с Э. дружбой и дружба эта повела Э. по новому пути. В 1725 г. Николай и Даниил Бернулли были приглашены в члены петербургской академии наук, недавно основанной императрицей Екатериной I во исполнение намерений Петра Великого. Уезжая, молодые Бернулли обещали Э. известить его, если найдется и для него подходящее занятие в России. На следующий год они сообщили, что для Э. найдется место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Э. немедленно записался в студенты медицины базельского университета. Прилежно и успешно изучая науки медицинского факультета, Э. находил время и для занятий по математическим предметам; за это время он написал напечатанную потом в 1727 г. в Базеле диссертацию о распространении звука («Dissertatio physico de sono») и исследование по вопросу о размещении мачт на корабле («Meditationes super problemate nautico de complantatione malorum»). Последнее, написанное на тему, предложенную французской академией, было принято академией в 1727 г. как достойное премии и напечатано в изданиях ее. Ту же работу, в качестве диссертации, Э. защищал для получения профессуры по кафедре физики в базельском университете. Занять место профессора ему здесь не удалось и он отправился в Петербург, где, по рекомендации академиков Германна и Даниила Бернулли, был назначен адъюнктом академии по математике и немедленно деятельно и прилежно стал работать, представляя академии исследования по разным вопросам прикладной математики. Почти в день приезда Э. скончалась покровительница академии императрица Екатерина I, и событие это печально отозвалось на судьбе академии. Новые порядки и новое управление стали угрожать даже самому существованию молодого учреждения. Иностранным академикам пришлось подумывать о возвращении на родину. Э. решился принять сделанное ему предложение о поступлении в морскую службу. Адмирал Сиверс, предугадывая пользу, которую может принести флоту такой ученый, выхлопотал для Э. чин лейтенанта флота и обещал дальнейшее скорое повышение по службе. Однако, вследствие выхода нескольких академиков и отъезда их на родину, Э. предложили получить оставшееся вакантным место профессора физики, которое он и занял; затем в 1733 г. он был сделан академиком на место, оставшееся свободным после отъезда друга его Даниила Бернулли за границу. Обладая громадным талантом, Э. вместе с тем обладал необыкновенным трудолюбием; соединением этих двух качеств и объясняется многочисленность и полезность его трудов. В 1735 г. потребовалось в академии выполнить одну весьма сложную работу. По мнению академиков, на это нужно было употребить несколько месяцев труда. Э. взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 г., появились два тома его аналитической механики («Mechanica, sive motus scientia analytice exposita», Petrop.). Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось, а существовавшие до этого времени трактаты были неудовлетворительны. В 1738 г. появились две части введения в арифметику на немецком языке, в 1739 г. — новая теория музыки («Tentamen novae theoriae musicae, ex certissimis harmoniae principiis dilucide expositae», Petrop.). Затем в 1840 г. Э. написал сочинение о приливах и отливах морей («Inquisitio physica in caussam fluxus et refluxus maris»), увенчанное одной третью премии французской академии; две другие трети были присуждены Даниилу Бернулли и Маклорену за сочинения их на ту же тему. Томы II, III, IV, V, VI, VII издания нашей академии: «Commentarii Acad. sc. Petrop.», вышедшие до 1841 г., и том VIII, вышедший в этом году, заключают значительное число мемуаров Э. по различным вопросам чистой и прикладной математики. В 1740 г., по кончине императрицы Анны Иоанновны, началось регентство Бирона. В это жестокое для России время Э. получил приглашение от Фридриха Великого переехать в Берлин. Очевидно, что при приглашении этого приобретшего уже известность ученого имелось в виду оживить берлинскую академию, пришедшую в упадок вследствие продолжительной войны. Поощренный вниманием короля, Э. собрал около себя небольшое ученое общество, а затем был приглашен в состав вновь восстановленной королевской академии наук и назначен деканом математического отделения. В 1743 г. в томе VII «Miscellanea Berolinensis» он поместил 5 мемуаров, из них 4 по чистой математике и из них последний («De integratione aeqnationum differentialium altiorum graduum») замечателен в двух отношениях. В нем указывается на способ интегрирования рациональных дробей путем разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами. Начиная с 1745 г. стали выходить мемуары возобновленной королевской академии, по тому в год, и в этом издании, в каждом томе, начиная с первого (1745 г.), находим от трех до девяти мемуаров Э. Так продолжалось до тома XXV-го 1769 г. и даже в 1772 и 1773 годах в новых мемуарах этой академии. Не желая прерывать сношений с петербургскою академию, он находил множество материала для других мемуаров, которые наполняют томы от IX (1744 г.) до ХlV (1751 г.) «Commentarii», затем от тома I (1750 г.) до тома XX (1776 г.) «Novi Commentarii Acad. sc. Petrop.» и далее от тома I (1777) до тома IV (1780) издания: «Nova acta Acad. sc. Petrop.». Кроме этого Э., начиная с 1744 г., написал несколько больших сочинений, изданных отдельно. Так, в 1744 г. напечатано в Лозанне сочинение под заглавием: «Methodus inveniendi lineas curvas maximi minime proprietate gaudentes, sive solutis problematis isopertmetrici latissimo-sensu accepti». Основным типом вопросов изопериметрических может служить вопрос об определении замкнутой кривой, которая при данном периметре заключает наименьшую площадь. Подобными вопросами интересовались и занимались геометры современные Э. и некоторые геометры раньше Э. Вопросы такого рода требуют определения такой функции, чтобы некоторый интеграл, заключающий эту функцию под знаком интеграла, был бы наименьшим или наибольшим. При решении получается некоторое дифференциальное уравнение, которому должна удовлетворять искомая функция. К числу изопериметрических вопросов относятся также вопросы об определении движения материальной системы при условии, чтобы интеграл, выражающий действие, был наименьшим или наибольшим. Автор рассматривает все подобные вопросы и приводит их к вопросам об интегрировании дифференциальных уравнений. После него только изложение решений таких вопросов изменилось, но сущность метода осталась та же. В том же 1744 г. напечатаны в Берлине три сочинения о движении светил, первое — теория движения планет и комет, заключающая в себе изложение способа определения орбит их из нескольких наблюдений; второе и третье — о движении комет. По желанию короля Э. перевел с англ. яз. и в 1744 г. издал книгу: «Neue Grundrisse der Artillerie von Robins», перевод, снабженный объяснениями и примечаниями Э. В сочинении Робинса, известного в истории артиллерии изобретателя баллистического маятника, были приведены различные выводы по внешней и внутренней баллистике. Э. в своих примечаниях сначала выводит теоретически закон сопротивления в виде двучлена, первый член которого, пропорциональный квадрату скорости, обусловливается ударом снаряда (шарового) о воздух, второй член, пропорциональный четвертой степени скорости, обусловливается перевесом давления сжатых частей струй воздуха на переднюю часть над давлением разреженных частей струй на заднюю. Получаемый при этом законе формулы баллистики представляются в весьма сложном виде, неудобном для употребления. Позднее в мемуаре: «Recherches sur la veritable соurbe que dеcrive les corps jetes dans l'air» («Mem. de Berlin», 1753) он ограничивается первым членом и получает формулы баллистики шарового снаряда удобно применимые. В 1746 г. напечатаны три тома разных статей («Varia Opuscula»), в числе которых между прочим находятся статьи по механике: решение вопроса о движении материальных точек, остающихся внутри движущегося канала, о возмущениях в движении планет и сопротивлении движению со стороны эфира, о движении гибких тел; по физике: «Recnerches sur la nature des moindres particules des corps», «Sur la Iumiere et couleurs», «Dissertatio de magnete». За теорию магнитных явлений, основанную на предположении о протекании эфира через промежутки между атомами, автор получил премию французской академии. В 1748 г. издана в Лозанне книга в двух томах: «Introductio in analysin infinitorum», упрочившая славу Э., как первостепенного математика. Почти все то, что преподается и теперь в курсах высшей алгебры и высшего анализа, находится в этой книге. В первом томе ее с необыкновенною ясностью и простотою изложены свойства функций рациональных и трансцендентных: тригонометрических, круговых, показательных и логарифмических, разложение последних в ряды, представление их в виде бесконечных произведений; свойства непрерывных дробей. Во втором теме аналитическое исследование кривых линии вообще и кривых второго, третьего и четвертого порядка и поверхностей второго порядка. В 4-й главе этой части выведены формулы преобразования координат прямоугольных в прямоугольные же при перемене начала координат и направления осей; здесь впервые вводятся те три угла, которые называются Эйлеровыми углами и играют в кинематике твердого тела существенную роль. В 1749 г. издана в Петербурге в двух томах «Scientia navalis, seu tractatus de constructione ac dirigendis navibus». Это полное и систематическое сочинение по навигации, заключающее в себе теорию равновесия и устойчивости судов, рассмотрение вопросов о качке на зыби, о форме судов и кораблестроении, о движении судов силою ветра и управлении судном. Сочинению этому предшествовали некоторые мемуары автора в разных ученых изданиях, из которых два были увенчаны премиями франц. академии. От короля и от императрицы автор получил за это сочинение значительные денежный награды. Оно было переведено на языки итальянский, английский и русский. В 1773 г., когда Э. был уже в Петербурге, сочинение это было издано в более понятном для моряков изложении под заглавием: «Theorie complete de la construction et des manoevres des vaisseanx». В 1755 г. в Берлине издано было в двух томах сочинение: «Institutiones calculi differentialis, cum eius usi in analysi finitorum ac doctrina suerierum». Книга эта заключает в себе систематическое и полное изложение оснований дифференциального исчисления и применений его к учению о рядах, к решению уравнений, к нахождению наибольших и наименьших значений функций, к раскрытию неопределенных выражений. Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Э. издал в 1762 г. сочинение: «Constructio lentium objectivarum ex duplici vitro» (Petrop.), в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Доллонд, открывший два различной преломляемости сорта стекла, следуя указаниям Э., построил первые ахроматические объективы. В 1765 г. механика Э. была дополнена сочинением: «Theoria motus corporum solidorum seu rigidorum Rostoch.», в котором находятся те дифференциальные уравнения вращения твердого тела, которые носят название Эйлеровых уравнений вращения твердого тела. Много написал Э. мемуаров об изгибе и колебании упругих стержней; эти вопросы были также одним из предметов исследований Даниила Бернулли. Вопросы эти интересны не только в математическом, но и в практическом отношении. Один из таких вопросов есть вопрос о так назыв. продольном изгибе, рассматриваемый в мемуаре: «Sur la force des colonnes», помещенном в томе XIII (1759 г.) мемуаров берлинской академии. К числу весьма важных для практической механики предметов, которыми занимался Э., относится предложенное им очертание зубцов по разверткам круга об этом говорится в статьях томов V и ХI «Novi Comment. Acad. Petrop.». Фридрих Великий, вполне оценивший гениальный талант и обширные познания великого геометра, давал ему поручения чисто инженерного характера; так, в 1749 г. он поручил ему осмотреть канал Фуно между Гавелем и Одером и указать необходимые исправления в недостатках этого водного пути; далее поручено было исправить водоснабжение в Сан-Суси. По поводу этого появилось немало статей по гидравлике, написанных Э. в разное время. Биографы Э. утверждают, что он очень желал вернуться в Poccию. В 1766 г. он получил через посла в Берлине, князя Долгорукова, приглашение имп. Екатерины II вернуться в академию наук на всяких условиях, каких бы Э. ни пожелал. Не смотря на уговоры остаться, делавшиеся со стороны особ королевского дома, он принял приглашение и в июне месяце прибыл в Петербург. Только что он поселился в доме, купленном для него на счет императрицы, как подвергся тяжкой болезни, после которой потерял зрение левого глаза вследствие образования катаракты. Благодаря услугам окружающих его лиц и сыновей его, Э., не смотря на потерю зрения, при своих гениальных способностях и замечательной памяти, диктовал свои дальнейшие мемуары и издавал отдельные свои книги. К числу последних принадлежит «Institutionum calculi integralis», изданная в Петербурге в 1768 — 70 гг. в трех томах и переизданная в 17927 — 94 гг., после смерти автора в 4 томах. Эта замечательная книга заключает в себе решение множества вопросов точного или приближенного интегрирования дифференциальных уравнений обыкновенных разных степеней и порядков и дифференциальных уравнений с частными производными, а кроме того здесь же находится и вариационное исчисление. В 1770 г. издано введение в алгебру, в 1769 — 71 гг, — «Dioptrica» в трех томах. В 1772 г. — «Theoria motuum Lunae». За сочинение «Theorie de la Lune et specialement sur l'equation seculaire», напечатанное в 1770 г., автор получил премию французской академии. По гидродинамике автор написал более двадцати мемуаров. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности и давления называются гидродинамическими уравнениями Эйлёра. Э. принадлежит доказательство соотношения между числом вершин, ребер и граней многогранника. Соотношение это такое: сумма числа вершин и граней равна числу ребер плюс два. Такое соотношение подозревал Декарт, но Э. доказал его в мемуарах: 1) «Elementa doctrinae solidorum»; 2) «Demonstratio nonullarum insignium proprietatum...» оба в IV томе «Novi Comment. Petrop.», Э. принадлежит весьма много мемуаров по теории чисел. В них он доказал многие свойства чисел, данные раньше его без доказательства. Так он доказал и обобщил известную в теорию сравнений теорему Фермата. Он также доказал, что всякое простое число вида 4n+1 всегда разлагается на сумму квадратов других двух чисел. С 1769 по 1783 г. Э. написал около 380 статей и сочинений. Неутомимость и настойчивость в научных исследованиях Э. были таковы, что в 1773 г., когда сгорел его дом и погибло почти все имущество его семейства, он и после этого несчастия продолжал диктовать свои исследования. Вскоре после пожара искусный окулист, барон Вентцель, произвел операцию снятия катаракты, но Э. не выдержал надлежащего времени без чтения и ослеп окончательно. В 1783 г. Э. скончался от апоплексического удара в присутствии своих помощников при работах проф. Крафта и Лекселя. Похоронен он в Петербурге на Смоленском кладбище. Три сына его и их дети остались в России. Самым лучшим памятником его славы и научной деятельности было бы полное издание всех его статей и сочинений, число которых простирается до 756, но для этого потребуются значительные средства, так как число печатных листов будет около 2000. Биографиями Э. могут служить: «Eloge de М. Leonard Euler par N. Fuss» (СПб., 1782; здесь список сочинений и статей Э.); «L'introduction a l'analyse des infiniment petits do М. Euler, traduit du latin par М. Pezzi, precede l'eloge de M. Euler par de Condorcet» (Страсбург, 1786). Очерк некоторых сочинений и статей Э. находится в книге «Vorlesungen uber Geschichte der Маthematik von Moritz Cantor» (Лпц., Teubner, тт. I, II, 1900; III, 1898). Д. Бобылев.

Перейти на страницу:
Комментариев (0)
название