-->

Энциклопедический словарь (Е-Й)

На нашем литературном портале можно бесплатно читать книгу Энциклопедический словарь (Е-Й), Брокгауз Фридрих Арнольд-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Энциклопедический словарь (Е-Й)
Название: Энциклопедический словарь (Е-Й)
Дата добавления: 16 январь 2020
Количество просмотров: 244
Читать онлайн

Энциклопедический словарь (Е-Й) читать книгу онлайн

Энциклопедический словарь (Е-Й) - читать бесплатно онлайн , автор Брокгауз Фридрих Арнольд

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Силы обнаруживают механически свое существование движением тел всей массой или движением частичным и давлением на препятствие. Последнее измеряется обыкновенными и крутильными весами; грубее — пружинными весами. Давление жидкостей и газов определяется манометрами. Чувствительность и точность весов чрезвычайно велики, при чем первая, по общему правилу, всегда превосходит вторую. И. сил (притягательных и отталкивательных) посредством движения тел, а именно И. ускорений, всего удобнее и точнее производится из числа качаний маятника в определенный промежуток времени. Таким образом определяется притяжение земного сфероида (геоида), различное на разных точках его поверхности. Горизонтальный электрический маятник может служить для И. электрических притяжений; качания магнитной стрелки — для измерения напряженности земного магнетизма. Для первой цели употребляются также особые крутильные весы, как, напр. в абсолютном электрометре Томсона; для земного магнетизма также могут служить магнитные весы Лойда. Сила гальванического тока определяется из положения магнитит стрелки, принимаемого ею вследствие давлений, производимых на нее отталкивательной силою тока и направляющею силою земного магнетизма.

В небесных светилах мы замечаем вращательное движение одних вокруг других, совершающееся по более или менее растянутым эллипсам или по параболам (для некоторых комет). Движений по орбитам объясняются с точностью на основании законов всеобщего тяготения, при чем берутся в соображение массы взаимно действующих небесных тел. Вообще при измерении сил необходимо принимать в расчет массу тел, приведенных в движение. И. масс, как и всяких других величин, производится по сравнению масс с одною, принимаемой за единицу меры (такова масса одного грамма); это делается по сравнению их движений в определенных условиях, но И. масс прямо количеством вещества нам недоступно, хотя и несомненно, что массы тел пропорциональны количествам вещества, в них содержащегося. Действие, совершаемое силою есть работа силы и зависит от массы тела и от скорости сообщенного ему движения или от длины пути, пройденного этим телом против действия другой определенной силы (напр., поднятие груза на высоту). При определении скорости или ускорений вступает новый элемент — время. В некоторых явлениях наблюдаются громадные скорости, напр., распространение света совершается со скоростью до 300000 км. в секунду; электрический ток, по обстоятельствам опыта, распространяется то с такою же, то с меньшею, чем свет, скоростью; поэтому значительные расстояния проходятся светом и электричеством в малые доли секунды. Хронометры и часы измеряют промежутки, обыкновенно, начиная с 3/4 сек., астрономы по слуху определяют десятые доли секунды, но сотые, тысячные и меньшие доли секунды измеряются при употреблении хроноскопов и хронографов. И здесь, как в других И., чувствительность приборов доведена до далекого предела (0,00001 сек.). В противоположность этому, астрономия нуждается, по медленности, с которою совершаются некоторые астрономические явления, в больших единицах времени, каковы, напр., столетие или даже тысячелетие; подобные единицы времени надо искать в самих же астрономических явлениях в предположении их неизменной и правильной повторяемости.

Чем совершеннее какая-нибудь наука, тем чаще могут быть употребляемы обыкновенные здесь перечисленные роды И. Так цветовые ощущения в основании различаны потому, что световые эфирные волны имеют различную длину и распространяются с различными скоростями, которые уже определены физикой. Подобное тому можно сказать и о звуковых и тепловых ощущениях. Сравнить два световые ощущения с некоторою количественною точностью мы не можем ни физическими или химическими средствами, ни физиологически; фотометрия есть самая несовершенная, в этом отношении, часть физики. Световые соотношения солнца и планет с их спутниками до сих пор гораздо хуже определены, чем отношения их масс или количеств вещества, содержащихся в этих небесных телах. Чувствительность же оптических приборов чрезвычайно велика: большие телескопы позволяют нам видеть звезды, испускающие свет в 20 и 30 тыс. раз слабейший того, который нужен для возбуждения зрительных нервов самого чувствительного, но не вооруженного человеческого глаза; чувствительность фотографических пластинок идет еще далее. Чувствительность же тепловых приборов гораздо ограниченнее. Стоило довольно большого труда доказать, что лунные лучи могут возвышать температуру самых чувствительных приборов, но не замечено, чтобы планеты или звезды испускали вместе с лучами света и лучи теплоты, хотя и несомненно, что оба рода лучей участвуют в светоиспускании. Иначе можно сказать, что лучи света, задерживаемые и поглощаемые каким-нибудь телом, непременно обращаются в нем в теплоту. Самые чувствительные термометры, более их чувствительный термомультипликатор и еще более совершенный прибор — болометр, не могут обнаружить теплоты образующейся в них от света самых ярких звезд. Организм же человека совсем не приспособлен к ощущению малых изменений тепла, и в этом отношении уступает самому обыкновенному термометру. Вообще и независимо от точности и чувствительности тепломерных приборов, ограничивающих область тепловых исследований, многое в явлениях теплоты еще не подлежит измерению. Напр., неизвестно, сколько теплоты содержится в том или другом теле при какой-либо температуре, ибо так называемые абсолютные температуры, считаемые от абсолютного нуля (от 273° Ц. ниже нуля) до сих пор не могут быть считаемы за действительные физические величины.

История наук, нуждающихся в И., показывает, что точность методы И. и построения соответственных И. приборов постоянно возрастают. Результатом этого роста является новая формулировка законов природы. Надо ожидать, что несовершенство нашего зрения и слуха, чувств наиболее нужных для пользования прибором, со временем положит предел возрастания чувствительности и в особенности точности И. Но предел физическому зрению не есть еще предел умозрению. И теперь наука уже пришла к необходимости допустить существование многого, не подлежащего познаванию чрез посредство органов чувств; таков, напр., световой эфир. И теперь наука не только рассуждает о частицах (молекулах), из которых состоят тела, но и приписывает их скорости движения, определяет длины путей, ими проходимых до встречи с другими частицами, определяет размеры частиц. Эти размеры таковы, что нет надежды когда либо видеть основные частицы тел. Все это гипотезы, кот. никогда может быть не найдут прямого доказательства, но подтверждены опытом выводов, проистекающих из многих гипотез, и теперь довольно часты. Такие подтверждения гипотез, будучи в достаточном числе, сделают для умственного зрения эти гипотезы столь же несомненными, сколь несомненны для телесных чувств те или другие опытные данные. Однако и при вступлении наук в этот фазис их развития, что в настоящее время встречается лишь в некоторых частных случаях, необходимость И. и И. приборов не исчезнет, так как выводы из гипотез потребуют новых оправдательных опытов и новых комбинаций И. Как бы старательно ни делались И. при повторении их, в обстоятельствах опыта, повидимому одинаковых, всегда замечаются нетожественные результаты. Сделанные наблюдения требуют математической обработки, иногда весьма сложной; только после этого можно пользоваться найденными величинами для тех или других выводов. Ф. Петрушевский.

Изо

Изо (греч. изо — равный) — в соединениях с другими словами обозначает одинаковое, равное по значению или по форме.

Изоляторы

Изоляторы (электр.). — В первое время развития сведений об электричестве (XVII ст.) все тела, по отношению к электричеству, были разделены на две большие группы: на тела идиоэлектрические, способные электризоваться трением, и тела анэлектрические, не электризующиеся трением. К числу последних были отнесены и все металлы. В начале XVIII ст. было обнаружено, что причина, по которой металл, при обыкновенных условиях опыта, когда натираемое тело держат рукою, не электризуется, совершенно особенная. Металлический цилиндр, какой бы длины он ни был, положенный на стекле, наэлектризовывается по всей длине, если к одному его концу поднесть наэлектризованное тело. Если же цилиндр сделан не из металла, а из стекла, парафина, серы, то он, при подобных же условиях, наэлектризуется лишь на том конце, к которому прикасается источник электричества. Отсюда можно заключить, что металлический цилиндр есть проводник электричества, стеклянный же или парафиновый — непроводники. Стекло, на котором находился металлический цилиндр, предохраняло (как непроводник) его от потери электричества. Из разнообразных опытов выведено заключение, что все металлы суть проводники электричества, стекло, сера, парафин — непроводники или И. Такой способ разделения тел в отношении электричества впервые был предложен английским физиком Греем (1727 г.). Впоследствии, впрочем, было доказано, что все тела суть проводники в различной степени — дурные и хорошие. К дурным проводникам, кроме названных, относится еще, часто ныне употребляемый, роговой каучук; совершенных же непроводников или изоляторов нет. Когда палочку рогового каучука, или иной дурной проводник, держа в руке, натирают, например, куском сукна, то он наэлектризуется, и электричество в нем сохраняется; медная же палочка, хотя тоже электризуется трением, но не остается наэлектризованною. В той же части, которая находится в руке, электричество не удерживается, потому что переходит в руку и через прочие части тела в землю; из отдаленных же частей палочки электричество переходит к тем, которых касается рука, и тоже уходит в землю. Металлическую палочку надо вставить в изолирующую стеклянную ручку и наэлектризовать трением. И. имеют особенные свойства, обнаруживающиеся при взаимном электрическом действии тел.

Перейти на страницу:
Комментариев (0)
название