-->

Загадочные явления природы

На нашем литературном портале можно бесплатно читать книгу Загадочные явления природы, Железняк Галина-- . Жанр: Эзотерика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Загадочные явления природы
Название: Загадочные явления природы
Дата добавления: 15 январь 2020
Количество просмотров: 302
Читать онлайн

Загадочные явления природы читать книгу онлайн

Загадочные явления природы - читать бесплатно онлайн , автор Железняк Галина

 

 

 

В 2006–2009 годах издательства Книжный клуб «Клуб семейного досуга» (Белгород) и Книжный клуб «Клуб семейного досуга» (Харьков) выпустило в свет потрясающую серию книг «Опасно: Аномальная зона» (харьковских исследователей-аномалистов). Все книги в твердом переплете, вышли тиражом в 5000 экз. каждая и нашли своего читателя.

  **********

Гало, радуги и смерчи… Ураганы и штили… Облака и огни святого Эльма… Молнии и град… Новая книга серии «Опасно: аномальная зона» объясняет физические феномены этих и многих других загадочных явлений природы.

В книге также подробно описаны особенности ночных наблюдений и методика, которой следует руководствоваться при наблюдениях НЛО.

Для широкого круга читателей.

   © Книжный Клуб «Клуб Семейного Досуга»

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 12 13 14 15 16 17 18 19 20 ... 60 ВПЕРЕД
Перейти на страницу:

• Счетчики элементарных частиц. Счетчик элементарных частиц Гейгера — Мюллера состоит из небольшого металлического цилиндра, снабженного окошком, закрытым фольгой, и тонкой металлической проволоки, натянутой по оси цилиндра и изолированной от него. Счетчик включают в цепь, содержащую источник тока, напряжение которого равно нескольким тысячам вольт. Выбирают напряжение, необходимое для появления коронного разряда внутри счетчика.

При попадании в счетчик быстро движущегося электрона последний ионизирует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток. Чтобы обнаружить его, в цепь вводят очень большое сопротивление (несколько мегаом) и подключают параллельно с ним чувствительный электрометр. При каждом попадании быстрого электрона внутрь счетчика листки электрометра будут отклоняться.

Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные быстро движущиеся частицы, способные производить ионизацию путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные заряженные частицы.

• Громоотвод. Подсчитано, что в атмосфере всего земного шара происходит одновременно около 1800 гроз, которые дают в среднем около 100 молний в секунду. И хотя вероятность поражения молнией какого-либо отдельного человека очень мала, тем не менее, молнии причиняют немало вреда. Достаточно указать, что в настоящее время около половины всех аварий на крупных линиях электропередач вызывается молниями. Поэтому защита от молнии представляет важную задачу.

Ломоносов и Франклин не только объяснили электрическую природу молнии, но и указали, как можно построить громоотвод, защищающий от удара молнии. Громоотвод представляет собой длинную проволоку, верхний конец которой заостряется и укрепляется выше самой высокой точки защищаемого здания. Нижний конец проволоки соединяют с металлическим листом, а лист закапывают в землю на уровне почвенных вод. Во время грозы на земле появляются большие индуцированные заряды, у поверхности Земли возникает сильное электрическое поле. Напряженность его очень велика около острых проводников, и поэтому на конце громоотвода зажигается коронный разряд. Вследствие этого индуцированные заряды не могут накапливаться на здании, удара молнии не происходит. В тех же случаях, когда молния все же возникает (а такие случаи очень редки), она ударяет в громоотвод, и заряды уходят в землю, не причиняя вреда зданию.

В некоторых случаях коронный разряд с громоотвода бывает настолько сильным, что у острия возникает явно видимое свечение. Такое свечение иногда появляется и возле других заостренных предметов (например, на концах корабельных мачт, острых верхушках деревьев и т. д.). Это явление было замечено еще несколько веков тому назад и вызывало суеверный ужас мореплавателей, не понимавших истинной его сущности.

Молнии

Такое красивое и небезопасное явление природы, как молния, представляет собой искровой разряд в атмосфере.

Уже в середине XVIII века обратили внимание на внешнее сходство молнии с электрической искрой. Высказывалось предположение, что грозовые облака несут в себе большие электрические заряды и что молния — это гигантская искра, ничем, кроме размеров, не отличающаяся от искры между шарами электрической машины. На это указывал, например, русский физик и химик Михаил Васильевич Ломоносов (1711–1765), наряду с другими научными вопросами занимавшийся атмосферным электричеством.

Это было доказано опытным путем в 1752–1753 гг. Ломоносовым и американским ученым Бенджамином Франклином (1706–1790), работавшими одновременно и независимо друг от друга.

Ломоносов построил «громовую машину» — конденсатор, находившийся в его лаборатории и заряжавшийся атмосферным электричеством посредством провода, конец которого был выведен из помещения и поднят на высоком шесте. Во время грозы из конденсатора можно было рукой извлекать искры.

Франклин во время грозы пустил на бечевке змея, снабженного железным острием; к концу бечевки был привязан дверной ключ. Когда бечевка намокла и сделалась проводником электрического тока, Франклин смог извлечь из ключа электрические искры, зарядить лейденские банки и проделать другие опыты, производимые с электрической машиной. Следует отметить, что такие опыты чрезвычайно опасны, так как молния может ударить в змея, и при этом большие заряды пройдут через тело экспериментатора в землю. В истории физики были такие печальные случаи. Так погиб в 1753 году в Петербурге Г. В. Рихман, работавший вместе с Ломоносовым.

Обычная линейная молния представляет собой гигантский электрический искровой разряд между слоями атмосферы или между облаками и земной поверхностью. Длина его составляет несколько километров при напряжении несколько сотен миллионов вольт и длительности в десятые доли секунды. Форма молнии обычно похожа на разветвленные корни разросшегося в поднебесье дерева. Тому есть свои причины.

Проводимость верхних слоев атмосферы достаточно велика, чтобы атмосферу можно было считать сферическим проводником. Существующее между отрицательно заряженной поверхностью Земли и положительно заряженной верхней атмосферой электрическое поле могло бы разрядиться менее чем за 5 минут из-за непрерывной ионизации молекул воздуха под действием космического излучения и естественной радиоактивности Земли. Однако этого не происходит, поскольку в результате грозовой активности поддерживается постоянный приток электронов к Земле. Разность потенциалов между нашим носом и ступнями могла бы достигать 200 В, если бы не высокая проводимость человеческого тела.

При разряде молнии заряды в облаке распределяются следующим образом: в основании облака сосредоточивается относительно небольшой запас положительных зарядов, в середине — большой отрицательный, наверху — огромный положительный. Вначале возникает разряд между основанием облака и его отрицательно заряженной серединой, при котором электроны переходят в основание облака. Предельное напряжение пробоя, вызывающее образование ионизованного канала, составляет примерно 3 млн В/м. Далее разряд продвигается вниз в виде ступенчатого лидера, прыгающего скачками по 50 м с паузами по 50 мкс, и с каждым скачком отрицательный заряд перемещается из облака в нижнюю часть проделанного лидером канала. Светится лишь нижняя часть лидера, но из-за быстрого движения нам виден полностью светящийся канал. Лидер скачет по ломаной линии, отклоняясь под действием разбросанных в воздухе положительно заряженных островков. Если неоднородность велика, лидер может изменить направление с вертикального на горизонтальное.

Вблизи заостренных предметов на поверхности Земли электрическое поле достигает таких значений, что навстречу лидеру устремляется положительный заряд, а в месте встречи возникает яркая вспышка, продолжающаяся до полной нейтрализации электричества. Ярко светящаяся область устремляется вверх по каналу лидера и достигает облака. Если движение вниз совершается примерно за 20 мс, то обратное движение происходит всего за 0,1 мс. Диаметр разряда-лидера измеряется метрами, а обратного разряда — несколькими сантиметрами. Свечение идет от центральной части канала. Человеческий глаз не способен отследить столь быстрое движение, поэтому светящимся кажется весь ствол с ответвлениями.

При вспышке молнии возникают импульсы электромагнитного излучения в широком диапазоне — от сверхнизких частот до 30 кГц и выше. Наибольшее излучение радиоволн находится в диапазоне от 5 до 10 кГц. Такие низкочастотные радиопомехи сосредоточены в пространстве между нижней границей ионосферы и земной поверхностью и способны распространяться на расстояния в тысячи километров от источника.

Электрический разряд молнии вызывает резкое расширение воздуха, в результате чего создается цилиндрическая ударная волна и образуется гром. Рядом с ударившей молнией можно расслышать шипение, производимое коронным разрядом, и следующий за ним щелчок — звук движущегося вверх сверхзвукового лидера. Сопровождающий молнию гром редко распространяется на расстояние более 25 км, хотя те же звуки орудийных выстрелов и взрывов снарядов разносятся значительно дальше. Дело в том, что скорость звука в теплом воздухе выше, чем в холодном. Поскольку с увеличением высоты температура уменьшается, верхняя часть звуковой волны, распространявшейся вначале горизонтально, движется медленнее, чем нижняя ее часть. Вследствие этого траектория волны загибается вверх. В холодный же день звук может отклоняться не вверх, а вниз, распространяясь на большие расстояния по поверхности Земли, но в морозные дни молнии не сверкают. Кроме того, достигая относительно более теплых слоев стратосферы, траектория волны может искривиться таким образом, что снова устремляется вниз, поглощаясь и рассеиваясь рельефом местности. Между областью, которой достигает прямая звуковая волна, и отраженной от стратосферы областью находится мертвая зона, в которой звук источника не слышен. За пределами этой зоны, вне видимости грозы, отраженный звук может появиться снова, предупреждая о нашествии стихии.

1 ... 12 13 14 15 16 17 18 19 20 ... 60 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название