Тайны космоса
Тайны космоса читать книгу онлайн
Не погибнем ли мы, как динозавры? Кто направляет кометы на Землю и сбивает межпланетные зонды? Не является ли Луна базой инопланетян? Неужто черная дыра — детородный орган Вселенной?
Эти и многие другие, еще не познанные загадки космоса, о которых повествует книга, — всего лишь верхушка айсберга, плавающего в огромном море неведомого. Но тот, кто заметил ледяную гору, уже не рискует наткнуться на нее внезапно, как было с экипажем «Титаника». А значит, есть надежда, что когда-нибудь любопытное человечество постигнет-таки великие тайны космоса.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Параллельно ЕКА занимается и другим проектом. Этот космический интерферометр предназначен для измерения расстояний, разделяющих звезды. Благодаря скрупулезной статистике мы заново — и более точно — определим плотность и протяженность Вселенной. Быть может, проанализировав эти цифры, мы поймем, будет ли Вселенная расширяться бесконечно, или однажды она начнет сжиматься. А это, в свою очередь, один из важнейших вопросов космологии о судьбе Вселенной.
Одновременно с европейцами над проектами радиоинтерферометров нового поколения работают и за океаном, в НАСА. На 2004 год запланирована американская «Space Interferometry Mission» («Космическая интероферометрическая миссия»). Система из семи связанных друг с другом телескопов также займется поиском планет у чужих солнц. Если опыт окажется удачным, в космос отправится «Planetfinder» («Планетоискатель») — прибор, специально разрабатываемый для этих целей.
Понятно, что эти эксперименты стоят очень дорого. Поэтому в НАСА подумывают, на чем можно сэкономить. Хорошо бы, например, заменить слишком дорогой телескоп Хаббла (диаметр зеркала — 2,4 м) аналогичным — но более дешевым и мощным — прибором. На изготовление первого космического инструмента ушло 1,5 млрд долларов. В ближайшие годы — вплоть до 2005 года, когда планируется отключить этот телескоп, — на его обслуживание придется выложить еще 2,1 млрд долларов. Причем сумма не включает затрат на полеты космического корабля, а ведь, если потребуется, придется еще запускать и «челноки», чтобы устранить какие-то неисправности.
Новый космический телескоп будет оборудован более мощным зеркалом (планируемый диаметр — 68 м). Обойдется его изготовление всего в 500 млн долларов; расходы на обслуживание составят каких-нибудь 400 млн в течение десятилетия. Весить аппарат будет в 5 раз меньше, чем его предшественник, всего 2,5 т. «Next Generation Space Telescope» — «космический телескоп следующего поколения» — можно доставить в космос с помощью непилотируемой ракеты, что дешевле, чем запускать космический «челнок».
«Хаббл-II» станет крупнейшим космическим телескопом, когда-либо обозревавшим просторы Вселенной. Он примется наблюдать в первую очередь за рождением молодых галактик на окраине мирозда ния. Поскольку их свет доходит до нас лишь в виде слабого инфракрасного излучения, телескоп оборудован специальной инфракрасной камерой, охлажденной до —240С. Чтобы защитить ее от жарких солнечных лучей, предусмотрен огромный экран размером в теннисный корт.
Если лунатик уронит карандаш… Впрочем, не только в космосе происходят сегодня знаменательные для астрономов события, и не только радиотелескопы переживают сегодня свое второе рождение.
«По-моему, космонавт что-то уронил», — скажет астроном, оторвавшись от своего инструмента, с помощью которого он только что рассматривал поверхность Луны. Возможно ли такое на самом деле? «Да, мы вполне сможем наблюдать за рассеянными инопланетянами в самом скором будущем, — полагает Джон Болдлин и его коллеги по обсерватории Кембриджского университета в Англии. — Дело в том, что наблюдательная астрономия вступает в новую эру — оптические телескопы-интерферометры отныне будут успешно соперничать с радиотелескопами».
Недавно те же кембриджские астрономы опубликовали снимки двойной звезды Катеоль — одной из самых ярких в Северном полушарии. Она находится в созвездии Возничего на расстоянии 40 световых лет от Земли. «Двойняшек» разделяет между собой более 1,5 млн км — расстояние по земным меркам весьма значительное. Однако даже для космического телескопа «Хаббл» или для самого мощного на нашей планете Кек-телескопа на Гавайях это расстояние чересчур мало, чтобы небесный объект можно было наблюдать в виде двух небесных тел. А вот скромный кембриджский телескоп сделал это без труда, а ведь в Англии нет даже приличного холма, на который можно было бы поставить телескоп.
Таким «чудом» английские астрономы обязаны опять-таки интерферометрии. Их телескоп называется КОАСТ — название составлено из первых букв английских слов, в переводе означающих «Кембриджский оптический щелевой синтезирующий телескоп». Состоит он, по существу, из трех телескопов, взаимосвязанных между собой в систему, где световая волна расщепляется на два луча; они потом накладываются друг на друга, и по их интерференционной картине ученые судят об особенностях испустившего их источника света.
Достижение кембриджских астрономов оказалось сенсацией даже для тех, кто работает непосредственно в этой узкой области практической астрономии. Однако Николас Эллиат из обсерватории Лоуэлл, принадлежащей военно-морскому флоту США, берет на себя смелость утверждать, что их новый оптический интерферометр, вступающий в строй в конце этого года, по качеству изображения превзойдет кембриджский КОАСТ.
«Оптическая интерферометрия сулит невиданный квантовый скачок, — говорит Эллиат. — Ныне этот раздел науки находится на той же стадии, на какой лет 30 тому назад находилась радиоастрономия».
Интерференционные картины, получаемые от радиотелескопов и от оптических приборов, в сущности, идентичны. Если, конечно, не считать того, что длина радиоволн колеблется между 1 м и 1 км, а длина оптического излучения измеряется долями микрона.
Турбулентность воздуха, тепло, вибрация — все это уже не может помешать интерферометрам создавать безупречное изображение.
В течение многих лет интерферометрия использовалась для формирования изображения на основе радиосигналов, получаемых от радиотелескопов. Самый большой из них, который так и называется «Очень большая антенна», расположен в штате Нью-Мексико и представляет собой 27 больших тарелкообразных антенн, занимающих солидное пространство — район диаметром 27 км.
Оптическая интерферометрия, имеющая дело с волнами ничтожной длины, не нуждается в гигантских территориях. Здесь главная задача — избежать ошибок, которые могут сказаться на конечном результате. Поэтому ныне для таких измерений и вообще оптических наблюдений все чаще прибегают к помощи адаптивной оптики, которая автоматически корректирует изображение, устраняя искажения, привносимые турбулентностью и вибрацией. Благодаря такой оптике и большие телескопы могут теперь работать подобно интерферометрам. Так что КОАСТ — лишь первая ласточка.
Совсем недавно начали работу «в упряжке» самые большие телескопы на Гавайях «Кек-1» и «Кек-2» с 10-метровыми зеркалами. Полным ходом идут также работы на Южной обсерватории Европейского астрономического союза. Она расположена не в самой Европе, а в Южном полушарии, точнее, в Чилийских Андах. Здесь устанавливают 4 зеркала диаметром 8,2 м каждое. Вместе их разрешающая способность равна зеркалу с эффективным диаметром 16 м. Синтезированное изображение будет получено благодаря компьютерной обработке. Инструмент позволит разглядеть светляка на расстоянии 10 тыс. км или объект размером менее метра на поверхности Селены. Вот тогда астрономы и смогут заметить, что астронавт обронил карандаш…
Все описанные нами проекты предвещают одно: в астрономии скоро грядет золотой век. Мы стоим на пороге фундаментальных открытий. Некоторые из них, впрочем, совершаются уже сегодня, буквально на наших глазах. Впервые за всю историю человечество получило более-менее надежные сведения о существовании планетных систем и у других звезд. Быть может, на какой-то из них тоже имеется разумная жизнь?
Как увидеть невидимое? Собственно говоря, новых планет никто из астрономов пока глазами не видел. Они догадались об их существовании по некоторым косвенным признакам.
Дело обстояло так. В школьном учебнике написано, что планеты обращаются вокруг Солнца по своим орбитам. На самом деле, если быть совсем уж точным, планеты тоже влияют своим тяготением на наше светило, обращаются вместе с ним вокруг некоего общего центра тяжести. Но поскольку масса Солнца намного больше массы всех планет, вместе взятых, то колебаниями общего центра масс обычно пренебрегают из-за их чрезвычайно малой величины. И лишь самые дотошные астрономы учитывают взаимные колебания небесных тел в своих расчетах.