Битва за скорость. Великая война авиамоторов
Битва за скорость. Великая война авиамоторов читать книгу онлайн
Борьба за господство в воздухе — это прежде всего ВОЙНА МОТОРОВ. Опыт Второй Мировой показал, что именно превосходство в скорости является решающим фактором в воздушном бою, а отставание СССР в моторостроении стало главной ахиллесовой пятой наших ВВС в Великой Отечественной войне. Вся история авиации есть ожесточенная БИТВА ЗА СКОРОСТЬ, а значит — за мощность авиадвигателей, по праву считающихся вершиной технологии и доказательством научно-технической состоятельности государства.
Эта книга — первое серьезное исследование великой войны моторов, продолжавшейся весь XX век и определившей развитие авиапромышленности, — от первых поршневых двигателей до новейших газотурбинных, от неуклюжих этажерок, летавших со скоростью мопеда, до гиперзвуковых стратосферных суперджетов последнего поколения. Будучи признанным авторитетом в области проектирования авиационных двигателей с более чем 40-летним стажем, автор лично участвовал в этой битве за скорость, а его книга не только в высшей степени компетентна, но еще и на редкость увлекательна, читаясь как захватывающий технотриллер.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
ОКБ Кузнецова получает в качестве утешительного приза заказ на двигатели для советского аэробуса ИЛ-86. Это была эпоха, когда будущее представлялось исключительно в розовом свете; ни терроризма, ни обвала экономики, ни жестокой мировой конкуренции по цене керосина (скачок цен на нефть произошел в 1973 г.) или экологии (ограничения по шуму) не предполагалось. Думали, что будут массовые и дешевые воздушные перевозки отдыхающих в Сочи и Минеральные Воды, для чего и планировался ИЛ-86 по схеме «багаж с собой», разумеется, без всяких досмотров безопасности. Но «враг» не дремал: в это же время ведущие западные фирмы уже разработали новое поколение двигателей с большой двухконтурностью и с лучшей экономичностью. Одновременно стали ужесточаться стандарты по экологии: уровню шума и выбросам вредных веществ. Безусловно, это было и средством конкурентной борьбы.
Еще когда только появились первые сведения в журналах о разработке этого нового поколения двигателей, наиболее инновационным из которых был, конечно, трехвальный RB.211 («Роллс-Ройс»), стало ясно, что необходимо разрабатывать для ИЛ-86 подобный же двигатель. Самолет живет долго, и если не предусмотреть возможность его ремоторизации, то жизнь этого самолета закончится раньше времени. К сожалению, так и произошло с хорошим самолетом ИЛ-86. Конъюнктурное решение о выборе двигателя НК-86 с малой степенью двухконтурности (а следовательно, и невысоким уровнем максимальной температуры газа якобы для большей надежности) разработки ОКБ Кузнецова привело к тому, что расстояние от крыла до бетона полосы не позволяет поставить на этот самолет двигатель нового поколения, имеющий больший диаметр.
Тем временем шло «выведение породы» двухконтурных двигателей с форсажной камерой для боевых самолетов. И здесь Самарское ОКБ Кузнецова имело фору, уже вовсю работая над амбициозным проектом сверхзвукового пассажирского Ту-144, осуществившего в начале 1968 г. первый вылет, раньше англо-французского «Конкорда». Кроме того, Кузнецов работал и над двигателем такого же типа для туполевского же бомбера Ту-22, а позже и Ту-160. Тем не менее проводились стендовые испытания соловьевского Д-30Ф без (пока что) надежды на установку на самолет.
В 1969 г. вдруг оказалось, что основной истребитель-перехватчик ПВО МиГ-25 не обеспечивает прикрытие со стороны Северного полюса в случае атаки крылатыми ракетами с бомбардировщиков, не заходящих на территорию СССР. «Мигам» не хватало дальности и автономности наведения на цель. Минобороны (ПВО) формирует техническое задание на разработку модификации МиГ-25, а фактически нового перехватчика МиГ-31.
Основные риски создания будущего двигателя (Д-30Ф6) для МиГ-31 выглядели следующим образом.
1. Неизвестно было, сохранит ли работоспособность компрессор двигателя, «привыкший» работать с дозвуковым незатененным воздухозаборником, при его взаимодействии со сверхзвуковым входом.
2. Не произойдет ли самовоспламенения паров топлива при впрыске в камеру сгорания, так как температура воздуха превышала 700 °C.
3. Не перегреется ли масло и вместе с ним опоры подшипников в условиях высокой температуры на входе в двигатель 300 °C.
4. Выдержит ли турбина повышенную температуру газа при условии, что температура охлаждающего воздуха достигает 700 °C.
Таким образом, главным риском обобщенно можно было назвать напряженное тепловое состояние создаваемого двигателя, обусловленное применением его на сверхзвуковом самолете. Кроме этих рисков, существовали и две теоретические догмы, которые предстояло опровергнуть:
1. С увеличением скорости полета расчетную степень повышения давления в компрессоре двигателя необходимо уменьшать, при М=3 степень повышения давления не должна быть выше 5 (как на двигателе Р15БФ2-300 для МиГ-25).
2. Максимальная температура газа перед турбиной должна поддерживаться начиная с взлетного режима у земли.
Чем опасно догматическое мышление? Оно заменяет исследование объекта некоей общей схемой. В результате Центральный институт моторостроения (ЦИАМ) оказался в плену догмы, а ОКБ — нет, так как там всегда шли не от общего, а исследовали сам конкретный объект — двигатель — с использованием его математической модели на базе физических уравнений. К тому времени развитие ЭВМ уже позволяло прогнозировать конкретные характеристики двигателя почти любой схемы с использованием матмоделей отдельных узлов. Поэтому проектировщики, к которым принадлежал и автор этих строк, даже не увидели ничего особенного, что могло бы вызвать какие-то опасения, связанные с физической невозможностью реализации этого проекта.
Вся эта длинная предыстория, кратко описанная выше, как уже отмечалось ранее, нужна для понимания того, как был создан двигатель для перехватчика, который было «невозможно создать» (по заключению ЦИАМ).
И снова Пермское КБ Соловьева «входит в турникет позади сразу двух конкурентов и выходит впереди». На самолете-прототипе МиГ-25 уже стояли двигатели прославленного ОКБ-300, и можно было ожидать предложений от проектировщиков по его развитию. Кстати, именно на этом двигателе была впервые внедрена электронная система управления двигателем. Кроме двигателя Р15БФ2-300 разработки ОКБ-300, уже существовал «в железе» и двигатель такого же класса тяги РД36-41 разработки Рыбинского КБ для сверхзвукового самолета СухогоТ-4. Короче, соперники были достойные. Преимуществом ОКБ Соловьева была освоенная схема двухконтурного двигателя, больше подходившая для многорежимного самолета, чем традиционная схема классического одноконтурного турбореактивного двигателя. По проекту двигатель, не проигрывая на сверхзвуке (за счет более высоких параметров — температуры), существенно выигрывал на дозвуке в экономичности за счет двухконтурной схемы. Но ведь такой двигатель еще надо было сделать!
Окно возможностей для вхождения в эту интересную и перспективную тему открылось в декабре 1969 г. Надо было быстро (за месяц) сформировать обоснованное техническое предложение для самолетчиков; главным конструктором самолета был известный деятель авиапрома Глеб Евгеньевич («Гнев Ебеньич») Лозино-Лозинский. Тем самым была создана возможность совершить прорыв в область высокотемпературных двигателей. Прототип подобного двигателя Д-30Ф на базе гражданского двигателя Д-30 уже три года как был в работе. Но его размерность (расход воздуха 125 кг/с, т. е. максимально возможная тяга 12 500… 13 500 кг) не подходила для МиГ-25. Требовалось же 15 000… 16 000 кг. Как только определилась размерность двигателя, попытались расчетным способом определить возможность форсирования Д-30Ф до нужного уровня. Ничего не получалось, что бы ни делали. Конечно, можно было «просто» увеличить размеры двигателя, но это — новое «железо» и, самое главное, длительные сроки. Возможность будет упущена. Нужно было «сварганить» двигатель-демонстратор из «готового» или почти готового «железа». В наличии имелось две размерности ядра-газогенератора: Д-30 и Д-30КУ, отличающиеся на 25 %. Первый был маловат, а второй — великоват. Почему-то никому не приходило в голову взять готовый компрессор газогенератора Д-30КУ
и… «отрезать» от него первую ступень. Достаточно простая задача комбинаторики. В этом случае размерность ядра-газогенератора точно подходила под заданную. Предложение такой комбинации было сделано автором этих строк. Если от компрессора высокого давления Д-30КУ одну ступень отрезали, то к вентилятору Д-30 одну ступень приставили спереди. Получилось то, что надо: расход воздуха 150 кг/с, тяга 15500 кг. Двигатель становился реальным. Коллега автора этих строк А. А. Пожаринский предложил отказаться от «догмы № 2», разработав специальную программу повышения температуры газа перед турбиной с увеличением скорости полета самолета. Это обеспечило получение требуемой тяги во второй критической точке: на высоте 20 км и скорости 2500 км/час. Позже ученые ЦИАМ назвали это «температурной раскруткой». Стало ясно, что двигатель получается. Демонстратор быстро может быть сделан из готовых узлов. За две недели все характеристики были рассчитаны и в срочном порядке переданы в ОКБ Микояна. П. А. Соловьев встретился с генеральным конструктором ОКБ-155 Р. А. Беляковым, и все закрутилось.