Битва за скорость. Великая война авиамоторов
Битва за скорость. Великая война авиамоторов читать книгу онлайн
Борьба за господство в воздухе — это прежде всего ВОЙНА МОТОРОВ. Опыт Второй Мировой показал, что именно превосходство в скорости является решающим фактором в воздушном бою, а отставание СССР в моторостроении стало главной ахиллесовой пятой наших ВВС в Великой Отечественной войне. Вся история авиации есть ожесточенная БИТВА ЗА СКОРОСТЬ, а значит — за мощность авиадвигателей, по праву считающихся вершиной технологии и доказательством научно-технической состоятельности государства.
Эта книга — первое серьезное исследование великой войны моторов, продолжавшейся весь XX век и определившей развитие авиапромышленности, — от первых поршневых двигателей до новейших газотурбинных, от неуклюжих этажерок, летавших со скоростью мопеда, до гиперзвуковых стратосферных суперджетов последнего поколения. Будучи признанным авторитетом в области проектирования авиационных двигателей с более чем 40-летним стажем, автор лично участвовал в этой битве за скорость, а его книга не только в высшей степени компетентна, но еще и на редкость увлекательна, читаясь как захватывающий технотриллер.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Здесь Добрынин продолжает работу над созданием своего мотора. Но с 1944 г. на этой площадке разворачивается серийное производство швецовского мотора АШ-62ИР (в просторечии «Ирочки») с редуктором, что отражено в индексе мотора. Этот мотор требовался в больших количествах, так как он ставился на «советский дуглас» Ли-2, долгое время (с учетом быстрого темпа развития техники) являвшийся основным транспортным самолетом. Уже после прекращения его регулярной эксплуатации он еще долго продолжал летать в Арктике, демонстрируя свою хорошую надежность. Позже (с 1947 г.) этот мотор перешел на другого долгожителя — знаменитый биплан Ан-2. Война закончилась, для расширения выпуска моторов требовалось оборудование (основная его часть осталась в Уфе), которое завезли частично из Перми (тамошний завод № 19 уже готовился к переходу на производство реактивных газотурбинных двигателей), частично из Германии по соглашению о репарациях. Завод № 36 стал производить серийно следующий, родственный АШ-62ИР, швецовский мотор АШ-73ТК для уже известного нам Ту-4. Пермь и Рыбинск, судьба сводила их не один раз то в качестве партнеров, то в качестве конкурентов.
Коллектив Добрынина упорно работает над своим мотором, но в 1946 г. получает задание на еще более мощный (3500 л.с.) мотор на основе предыдущего М-250. Надо сказать, что специальное приборное оборудование, жизненно необходимое для исследования и доводки моторов, в СССР тогда практически отсутствовало. Например, не было осциллографов. Когда в 1945 г. советские инженеры ознакомились с лабораторным оснащением испытательных стендов в Германии, то они были поражены, насколько далеко ушли немцы в исследовании тонких эффектов. У нас же доводка шла на основе интуиции инженеров и подчас рискованных экспериментов. Так, для исследования колебаний лопастей винта один из ведущих специалистов ОКБ-36, начальник отдела прочности Е. М. Бермант спроектировал металлическую клетку, в которой лично с помощью стробоскопа наблюдал за формами колебаний лопастей винта во время работы на стенде. Эта клетка с исследователем находилась в одном метре от плоскости вращения винта [15] на работающем моторе.
В 1948 г. этот новый мотор проходит госиспытания, но как раз в это время выявляется острая потребность в 4-тысячнике для Ту-85 — и… снова в путь. К моменту начала летных испытаний (1951 г) Ту-85 были готовы два мотора: 28-цилиндровая 4-рядная «звезда» воздушного охлаждения ALU-2TK Швецова и 24-цилиндровый (6 продольных рядов по 4 цилиндра) мотор ВД-4К Добрынина. Соотношение диаметра цилиндров и хода поршня (D/S) на моторе ВД-4К было 148–144 мм. Если посмотреть «родословную» этого мотора по соотношению D/S, то мы увидим, что ближе всего к нему находится мотор М-105: диаметры цилиндров совпадают, но ход поршня меньше. Но на этом сходство заканчивается. Зарубежных работающих аналогов этого мотора (шестирядных «звезд» жидкостного охлаждения) не было. Неслучайно этот мотор (ВД-4К) имел и хорошие массовые характеристики: отношение мощности к массе мотора составляло 2, т. е. по этому показателю он был на мировом уровне. Мотор Швецова оказался тяжелее.
Мотор ВД-4К, первый из серии «ВД», т. е. имевшей — персональные» индексы по инициалам главного конструктора В. Добрынина, получился очень хорошим. Индекс «К» в названии мотора означает «комбинированный». К этому времени мощные поршневые моторы постепенно превращались в комбинированные (или по-американски — «компаундные»), т. е. турбопоршневые, или скорее поршне-турбинные: на выхлопе из поршневой группы ставились так называемые импульсные (периодического действия) турбины, работавшие на выхлопных газах и добавляющие мощность на валу мотора. Отдельным агрегатом располагался и турбокомпрессор наддува, турбина которого тоже приводилась выхлопными газами. В результате мотор ВД-4К оказался и очень экономичным. 1 мая 1951 г. первый (и последний) Ту-85, оснащенный четырьмя моторами ВД-4К, принял участие в воздушном параде, пролетев над Красной площадью.
ОКБ-19 А. Д. Швецова предприняло последние усилия в продлении жизни мощных поршневых моторов, построив «в железе» 36-цилиндровую четырехрядную «звезду» воздушного охлаждения АШ-ЗТК мощностью 6000 л с. с турбокомпрессором наддува. Этот мотор оказался самым мощным поршневым мотором в мире, но… время его уже ушло, и доводка его не состоялась.
Переход к мирному послевоенному времени и начавшаяся вскоре в июне 1950 г. война в Корее дали жизнь новым модификациям уже ставшего знаменитым мотора АШ-82. Для замены устаревшего Ли-2 Ильюшин построил военно-транспортный Ил-12, а затем на его базе — пассажирский вариант Ил-14. Этот самолет уже проектировался с требованиями обеспечения комфорта пассажиров: палуба была горизонтальной (Ил-14 имел в качестве третьей точки опоры модное носовое колесо в отличие от небольшого хвостового на Ли-2, в результате чего палуба последнего при посадке пассажиров была наклонной — очень неудобно), должны были быть уменьшены вибрация и тряска мотора. Как вспоминал П. А. Соловьев: «Была еще одна серьезная разработка — двигатель для первого пассажирского гражданского самолета Ил-14. Раньше был самолет военно-транспортный Ил-12. Он был, конечно, грубо сделан, его трясло невероятно. И мы сделали специальный двигатель для самолета Ил-14 на базе АШ-82. Машина работала ровно, без высокой перегрузки по высокочастотной вибрации, она была заметно лучше. Сразу—500 часов ресурс у этого двигателя был» (Соловьев, с. 23).
Как это «просто» — взяли и уменьшили вибрации. На самом деле инженерное решение было отнюдь не тривиальным — впервые в истории отечественной авиации было введено динамическое уравновешивание на валу мотора не только сил инерции первого порядка, но и сил инерции второго порядка, осуществляемое с помощью противовесов, приводимых во вращение с удвоенной угловой скоростью [10].
И тогда, и сегодня в причинах катастроф самолетов спешат в первую очередь обвинить неисправность мотора, т. е. «перевести стрелку» на главную энергетическую систему самолета. Как правило, потом оказывается, что мотор не виноват. И это понятно: прежде чем мотор попадает на самолет, он проходит множество испытаний, подтверждающих его надежность и, самое главное, безопасность эксплуатации. При сертификации двигателя экспериментально подтверждается практическая невероятность возникновения так называемых нелокализованных отказов и пожаров двигателя. То есть и возможный отказ двигателя, и возможный пожар не должны распространяться за пределы самого двигателя. Для этого делаются непробиваемые корпуса двигателя, монтируются системы пожаротушения, производится непрерывный мониторинг и анализ основных параметров двигателя. Но самолет — сложная система, к тому же очень сильно зависящая от качества обслуживания. В первую очередь причины нужно искать там. Ну и, конечно, человеческий фактор. Примеров тому — масса: закупка некачественного, с примесями, топлива в топливозаправочном комплексе (отказы двигателей на Ту-134 в Норильске и Ту-204 в Перми), оставление образовавшегося во время стоянки льда на крыльях и фюзеляже, попавшего затем при взлете самолета в двигатель (известная катастрофа Тy-134 в Минске), выключение летчиком по ошибке исправного двигателя вместо соседнего отказавшего (катастрофа Ил-62М под Ленинградом), приведшее к усложнению условий эксплуатации (УУЭ) и последующей катастрофе, невыполнение инструкции по эксплуатации бортинженером (он «не заметил» превышения оборотов воздушного стартера при взлете Ту-154М) и т. п.
Вот типичный случай.
«Самолет Ил-14 утонул. Шел из Москвы в Саратов или Горький, одним словом, Волгу должен был перелететь и там уже километрах в 10 от берега сесть на аэродром. И вот он зашел уже на посадку, низко летел, и на середине Волги, как говорится оба двигателя обрубило, и они оба остановились. Самолет сел на воду, должен 15 минут плавать по техническим условиям. Пришел катер спасательный, всех пассажиров сняли… Сначала все свалили на двигатели. Генеральный конструктор тут же вызывается, чтобы начальство прикрыть. Но ведь известно, что два двигателя одновременно не останавливаются, если нет какой-то общей причины. И мне было ясно, что это двигателей не касается. Вытащили самолет на берег, на песчаный пляж. Мотористы слили воду, промыли. Заправили немножко двигатели. И начали запускать.