Дядюшка Петрос и проблема Гольдбаха
Дядюшка Петрос и проблема Гольдбаха читать книгу онлайн
Это – роман, переведенный на все основные языки мира и имевший огромный успех более чем в двадцати странах.
Это – новая страница в творчестве Апостолоса Доксиадиса, блестяще-интеллектуального представителя школы "литературного космополитизма", доселе известной читателю лишь по произведениям Кадзуо Ишигуро и Милана Кундеры.
История чудаковатого дядюшки, всю свою жизнь положившего на решение принципиально неразрешимой научной проблемы, под пером Доксиадиса превращается в стильный "РОМАН ИДЕЙ"…
Это – "Дядя Петрос и проблема Гольдбаха". Книга, читать которую БЕСКОНЕЧНО ИНТЕРЕСНО…
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Через несколько дней он принял приглашение сыграть и проиграл, что вызвало у него раздражение, особенно когда он узнал, что его партнер по роду занятий – погонщик скота. В эту ночь дядя Петрос лег спать поздно, весь вечер прокручивая в мозгу ходы и пытаясь определить ошибки. В последующие вечера он проиграл еще несколько партий, но потом одну выиграл и ощутил огромную радость – чувство, которое подстегнуло его одержать еще несколько побед.
Постепенно он сделался завсегдатаем кафе и вступил в местный шахматный клуб. Один из членов клуба сообщил ему об огромном объеме накопленной мудрости, касающейся первых ходов партии, – эта мудрость называлась «теория дебютов». Петрос взял в библиотеке учебник и купил себе шахматы, которые оставались с ним и в старости у него дома в Экали. Он всегда поздно засиживался по вечерам, но в Инсбруке – не из-за Гольдбаха. С расставленными на доске фигурами, с книгой в руке, он проводил часы за изучением основных начал – «Испанской партии», «Королевского и ферзевого гамбитов», «Сицилианской защиты».
Вооруженный некоторой теорией, он стал выигрывать все чаще и чаще, к своему огромному удовлетворению. Разумеется, проявляя рвение неофита, он несколько перебирал, проводя за шахматами часы, принадлежащие математике, приходя в кофейню все раньше и раньше и даже обращаясь к шахматной доске в дневные часы, чтобы проанализировать вчерашние партии. Однако вскоре взял себя в руки и ограничил занятия шахматами вечерними прогулками и часом занятий перед сном (изучение дебюта или разбор знаменитой партии). Несмотря на это, уезжая из Инсбрука, дядя уже был непререкаемым местным чемпионом.
Шахматы серьезно изменили его жизнь. С тех пор, как он посвятил себя решению проблемы Гольдбаха – а это было почти десять лет назад, – Петрос почти никогда не отдыхал от своей работы. Но для математика важно иногда отвлекаться от проблемы, которой он занят. Чтобы переварить сделанную работу и проанализировать ее результаты на уровне подсознания, периоды покоя так же необходимы, как периоды работы на износ. Насколько исследование математических концепций оживляет спокойный ум, настолько же оно может быть невыносимо для ума усталого, истощенного постоянными усилиями.
Из его знакомых математиков каждый отдыхал по-своему. Для Каратеодори отдыхом были его административные обязанности в Берлинском университете. У коллег по математическому факультету бывало по-разному: для семейных отдыхом обычно была семья, для некоторых – спорт, для других коллекционирование или посещение театров, концертов и других развлечений, которых в Мюнхене достаточно. Но Петросу ничего из этого не подходило – ничто его не занимало настолько, чтобы отвлечь от работы. В какой-то момент он пытался читать детективы, но когда исчерпал расследования ультрарационалиста Шерлока Холмса, ничто другое уже не могло удержать его внимания. Долгие вечерние прогулки никак нельзя было счесть отдыхом. Тело его гуляло по городу или на природе, вдоль безмятежного озера или по оживленной улице, а ум был постоянно занят Проблемой, и сама ходьба служила лишь способом сосредоточиться на работе.
Шахматы, казалось, были ниспосланы ему самим небом. Будучи по своей природе игрой для ума, они требовали сосредоточенности. Невнимание всегда наказывается, разве что в игре с намного более слабым противником, да и тогда бывает, что за него приходится платить. Петрос погрузился в изучение партий великих шахматистов (Стейница, Алехина, Капабланки) с сосредоточенностью, знакомой ему ранее только по работе математика. Добиваясь победы над лучшими игроками Инсбрука, он обнаружил, что можно – пусть ненадолго – полностью отвлечься от проблемы Гольдбаха. Встречаясь с сильным партнером, он, к своему крайнему удивлению, замечал, что несколько часов вообще не может думать ни о чем, кроме шахмат. Эффект оказался живительным. Наутро после игры Петрос брался за Проблему с ясным и освеженным умом; открывались пути и связи, которых он раньше не видел, и это как раз тогда, когда он начал бояться, что иссякает.
Расслабляющий эффект шахмат позволил дяде отучить себя от снотворного. Отныне, если ночью его одолевали бесплодные навязчивые мысли о Проблеме, если усталый разум вертелся и блуждал в бесконечном математическом лабиринте, дядя вставал, садился за шахматную доску и разбирал какую-нибудь интересную партию. Погружаясь в нее, он временно забывал математику, веки тяжелели, и он до утра засыпал в кресле, как младенец.
Перед концом двухлетнего отпуска Петрос принял судьбоносное решение: он опубликует свои два открытия – «Теорему Папахристоса о разложении» и вторую теорему.
Но это, следует подчеркнуть, отнюдь не потому, что дядя решил удовольствоваться малым. Никаких пораженческих настроений по поводу решения проблемы Гольдбаха у него не было. Работая в Инсбруке, Петрос спокойно изучил все работы в этой области. Он проработал результаты, полученные до него другими, и проанализировал ход собственных исследований. Рассмотрев в ретроспективе свои результаты, он убедился в следующем: а) две его теоремы о разложениях были сами по себе важными результатами и б) они не приблизили его к решению проблемы – первоначальный план пока не дал результатов.
Душевный мир, которого он достиг в Инсбруке, принес Петросу фундаментальное озарение: дефект его подхода состоял в том, что он принял на вооружение аналитический метод. Он понял, что его увлек в сторону успех Адамара и Валле-Пуссена, доказавших теорему о распределении простых чисел, а также – и в особенности – авторитет Харди. Иными словами, ему затуманили зрение требования математической моды (да-да, такая вещь существует!), требования, не в большей степени имеющие право считаться Математической Истиной, чем ежегодные капризы гуру от кутюр – Платоновым Идеалом Красоты. Теоремы, обоснованные строгими доказательствами, являются, конечно, абсолютными и вечными, но методы, которыми их доказывают, – определенно нет. Выбор методов по определению конъюнктурен – вот почему они так часто меняются.
Мощная интуиция Петроса говорила ему теперь, что аналитический метод себя исчерпал. Настало время для чего-то нового, или, точнее говоря, чего-то старого, возвращения к древнему и проверенному временем подходу к тайнам чисел. На его плечи, решил он, легло тяжкое бремя заново определить направление развития теории чисел на будущее: решение проблемы Гольдбаха, полученное элементарной, алгебраической техникой, решит вопрос раз и навсегда.
А что касается его первых результатов – теоремы о разложении и второго результата, – их можно теперь без риска отдать математической общественности. Поскольку они получены аналитическим методом (который более не казался полезным для решения Проблемы), их публикация не грозит тем, что кто-то опередит его в получении главного результата.
Когда Петрос вернулся в Мюнхен, домоправительница обрадовалась, увидев герра профессора в столь цветущем виде. Она его даже с трудом узнала; как она сказала, «он просто помолодел, просто сиял здоровьем».
Была середина лета, и Петрос, не обремененный академическими нагрузками, начал составлять монографию о своих двух теоремах с доказательствами. Пожиная плоды десятилетних усердных трудов на ниве аналитического метода, видя их в конкретной форме, с началом, серединой и концом, полностью и четко представленными и изложенными, Петрос был вполне доволен. Он понимал, что, хотя и не решил пока Проблему, сделал в математике выдающуюся работу. Не приходилось сомневаться, что публикация двух его теорем принесет ему первые серьезные научные лавры. (Выше уже было сказано, что он сбрасывал со счетов прикладной результат «метода Папахристоса решения дифференциальных уравнений».) Он мог теперь даже позволить себе помечтать о том, что его ждет. Он уже видел восторженные письма коллег, поздравления на факультете, приглашения прочитать лекции о своих результатах в главных университетах мира. Он даже видел получение международных наград и премий. А почему бы и нет? Его теоремы этого заслуживают.