Двустороннее движение электричества. Тесла. Переменный ток
Двустороннее движение электричества. Тесла. Переменный ток читать книгу онлайн
Никола Тесла был великим мечтателем, идеи которого нашли свое применение только через 100 лет после их появления. Несмотря на то что именно ему принадлежит идея создания двигателя переменного тока, благодаря которому электричество пришло в дома и заводы XX века, этот сербско- американский ученый умер в нищете, забытый своими современниками. Изобретения и открытия, над которыми работал Тесла, бесчисленны: это и пульт дистанционного управления, и самолет вертикального взлета, и беспроводная лампа; также он разработал основы устройства радара, стал предвестником радиоастрономии и проводил опыты по криогенике. Его главной целью было создание технологии передачи электрической энергии и информации в любую точку планеты без проводов - эта идея стоила ему состояния и репутации.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
РИС. 3
Эффект Эрстеда, согласно которому при прохождении тока по проводнику рядом с компасом стрелка компаса отклоняется в направлении проводника. Фарадей и Ампер частично основывали свои работы на открытии датского ученого, установившего связь электричества и магнетизма.
Фарадей изучил старый опыт, который до сих пор показывают на уроках физики: если рассыпать железные опилки на бумаге, расположенной над магнитом, то они образуют кривые линии, соединяющие полюсы магнита. Фарадей заявил, что эти силовые магнетические линии — визуальный образ магнитного поля. С другой стороны, Фарадей знал об открытом датским ученым свойстве, которое устанавливало несомненную связь электричества и магнетизма. В 1811 году Ханс Кристиан Эрстед (1777-1851) увидел, что при расположении компаса возле провода, по которому пропускается электрический ток, стрелка отклоняется, занимая перпендикулярное положение к проводу (см. рисунок 3). Фарадей догадался, что электрический ток тоже может образовывать магнитные силовые линии вокруг провода.
Эти догадки смог подтвердить Андре-Мари Ампер (1775— 1836), продолживший исследования Эрстеда. В своих опытах Ампер увидел, что провод, по которому течет электрический ток, ведет себя как магнит: два параллельных провода, по которым ток проходит в одном направлении, взаимно притягиваются, а когда направление тока противоположное, провода взаимно отталкиваются. Французский ученый открыл, что провод, намотанный на катушку, при прохождении по нему электрического тока подобен магниту. Именно он впервые использовал понятие «электромагнетизм».
РИС. 4
В динамо-машине Фарадея кинетическая энергия движения вращающегося медного диска превращается в электричество, так как диск пересекает силовые линии магнита, индуцируя электрический ток.
Таким образом, базовым принципом электромагнетизма является следующее: когда два электрических заряда находятся в движении, между ними возникает магнитная сила (кроме электростатической силы, которая, согласно закону Кулона, имеется между двумя зарядами в состоянии покоя). Все проявления магнитных феноменов могут быть объяснены силой, возникающей между движущимися зарядами.
После этого Фарадей задался вопросом: а может ли все быть наоборот? Способен ли магнит вызывать электрический ток такой же, как от батарейки? Он поставил 29 августа 1831 года решающий эксперимент: ученый вращал намотанный на катушку провод вокруг магнитного сердечника и действительно добился возникновения электрического тока (см. рисунок 4). Исследуя данный феномен, он понял, что ток появляется из-за пересечения проводом магнитных силовых линий. Так он открыл принцип электрической индукции: переменное магнитное поле индуцирует электродвижущую силу. Закон Фарадея гласит, что величина ЭДС пропорциональна скорости изменения магнитного потока. Кроме того, Фарадею удалось создать первый электрический генератор, или динамо-машину (от греческого dinamis — «сила»), в которой электричество возникало от механического движения.
РИС. 5
Вертикальные магниты (С и D) притягивают горизонтальные (А и В), обмотанные медной проволокой. Движение толкает металлические зонды (о-p и q-r) к латунным наконечникам (1-т и s-t) наполненным ртутью и прикрепленным к цинковой и медной пластинам, погруженным в раствор кислоты (F). Ток проходит по обмотке горизонтального электромагнита, заставляя его качаться, притягиваясь поочередно то к С, то к D.
В то же время по другую сторону Атлантики американец Джозеф Генри (1797-1878), также самоучка, независимо и параллельно с Фарадеем открыл электрическую индукцию, следуя шаг за шагом за датчанином Эрстедом. Генри был идеалистом и считал, что должен разделить свои знания со всем миром, что привело его к потере патента на телеграф, который удалось зарегистрировать Сэмюэлю Морзе (1791-1872). В 1831 году, когда Фарадей создавал первый электрогенератор, Генри завершал свои опыты с электромагнитами и разработал устройство, дополняющее то, что придумал его английский коллега: Генри использовал электрический ток с целью заставить поворачиваться колесо. Он изобрел электрический двигатель (см. рисунок 5). Если в динамо-машине ротор — вращающаяся часть устройства — преобразует механическое движение в электричество, то в двигателе ротор трансформирует электричество в механическое движение.
Джеймс Клерк Максвелл внес значительный вклад в науку, но его главным достижением было описание посредством системы четырех уравнений свойств электромагнитного поля и его взаимодействия стелами, имеющими электрический заряд. Впоследствии было установлено, что уравнения Максвелла — лишь приближение уравнений, составляющих фундаментальные основы квантовой электродинамики. В большинстве случаев расхождения между квантовой электродинамикой и уравнениями Максвелла слишком малы для того, чтобы измерить их, и неактуальны. Но в случаях, когда свет ведет себя как частица, или для очень интенсивных полей они становятся важны. В дифференциальном виде уравнения Максвелла для макроскопического мира выглядят следующим образом.
— Закон Гаусса:
где →D — электрическая индукция, ρ — плотность электрического заряда в вакууме ( перевернутая Δ —дифференциальный оператор). Этот закон описывает электрическое поле, создаваемое зарядом. Электрический заряд создает электрическое поле. Ток электрического поля в закрытом контуре пропорционален заряду контура. На рисунке 1 показано электрическое поле, создаваемое одним зарядом.
— Закон Гаусса для магнитного поля:
где →В — магнитная индукция. Данный закон описывает магнитное поле, создаваемое магнитом. В отличие от электрического поля, не существует понятия «магнитного заряда» и монополярного магнита; магнитное поле возникаете биполярной конфигурацией. Это объясняет, почему силовые линии магнитного поля замкнуты (см. рисунок 2), и магнитный поток, проходящий по контуру, равен нулю.
— Закон Максвелла-Фарадея (сформулированный на основе закона индукции Фарадея):
где →Е — напряженность электрического поля, t — время (перевернутая Δ х — ротор, векторный оператор и ∂/∂t — частная производная от времени). Закон Фарадея описывает, как переменное магнитное поле во времени индуцирует электрическое поле. Это явление применяется для генерирования электричества (см. рисунок 3): при вращении магнита создается электрический ток в ближайшем проводнике.
— Закон Ампера (исправленный Максвеллом):
где →Н — напряженность магнитного поля, a J — плотность электрического тока. В первоначальном законе Ампера описывается, как электрический ток может вызывать появление магнитного поля (см. рисунок 4). Кроме того, магнитные поля могут возникать от переменных электрических полей. Это второе явление, имеющее огромную важность, и есть дополнение Максвелла к закону Ампера. Так Максвелл дал объяснение распространению электромагнитных волн и установил фундаментальную связь между оптикой и электромагнетизмом, осознав, что обе дисциплины изучают виды электромагнитного излучения, такие как радиоволны, рентгеновские лучи, видимый свет и тому подобное.