По кругу с Землей. Коперник. Гелиоцентризм
По кругу с Землей. Коперник. Гелиоцентризм читать книгу онлайн
Николай Коперник не мог предвидеть, что его имя будет связано с величайшей научной революцией. Он родился и получил образование в процветающей Польше XV века, всегда был человеком скромным и глубоко религиозным. В отличие от многих его последователей, ученого никогда не преследовали за его идеи. А идеи были крамольными: поместив Солнце в центре Вселенной, Коперник, с одной стороны, сбросил тысячелетнее иго теории Птолемея, а с другой — посеял сомнения в правильности библейского изложения астрономии. Дерзнув пойти против традиций и религиозных догм, польский астроном передал нам не только новое представление об устройстве Вселенной, но и неопровержимое доказательство силы и важности свободной мысли.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Фронтиспис книги Везалия (слева) и анатомический рисунок Леонардо да Винчи (справа).
Основная идея заключалась в использовании кривых, называемых эпитрохоидами (см. страницу 76). Эти кривые вращения позволяют достаточно простым образом представить формы в виде завитков, в том числе те, что встречаются при попятном движении планет. Элегантный способ начертить кривую этого типа — это представить две окружности (рисунок 3). По одной из них движется центр другой окружности, которая, в свою очередь, вращается в том же или противоположном направлении; точка на этой окружности описывает кривую. Эта кривая и есть эпитрохоида.
Согласно этой идее, Птолемей в своей модели Вселенной утверждал, что планеты движутся вокруг Земли на сферах, которые он назвал эпициклами; центры этих сфер, в свою очередь, движутся по поверхности основных сфер, которые он назвал деферентами. Таким образом, подбирая размеры эпициклов, Птолемей смог с большой точностью объяснить движение планет. В некоторых случаях было необходимо добавить другие, еще меньшие сферы, которые двигались по эпициклам. Соотношение между радиусами деферентов и эпициклов определяло форму получающейся траектории.
Птолемей предложил космологическую модель на основе 39 окружностей. В последующие годы другие авторы предложили дополнения к птолемеевой модели, исправляющие расхождения с экспериментальными данными. Некоторые источники упоминают до 90 окружностей, но для моделирования движения светил с точностью, доступной во времена Коперника, достаточно было от 50 до 60. Пример чрезвычайной сложности этой модели мы можем видеть на рисунке 4, где изображены траектории Меркурия в течение семи лет и Венеры в течение восьми лет. Траектории планет образуют настоящую паутину.
РИС.З
РИС. 4
На рисунке 3 с помощью деферента и эпицикла изображена эпитрохоидальная траектория планеты. Эта сложная система в течение веков объясняла движение планет, в том числе попятное движение. На рисунке 4 показаны геоцентрические траектории внутренних планет (Меркурия и Венеры) в течение нескольких лет: семи лет для Меркурия и восьми — для Венеры. Сложность рисунка огромна даже для такого срока.
Используя эпициклы, Птолемей должен был, например, объяснить изменение яркости планет в течение годового цикла. Он предположил, что все большие сферы-деференты вращаются вокруг нашей планеты, но центр вращения, который он назвал эквант, не совпадает с самой планетой. Солнце, Луна и все планеты вращаются вокруг этой точки с постоянной скоростью по круговым орбитам. В связи со смещением центра вращения расстояние между небесными телами, в том числе Луной и Землей, постоянно меняется, что влечет изменение яркости. Таким образом, система Птолемея не являлась геоцентрической в строгом смысле, как система Аристотеля — с Землей в центре Вселенной, но геостатической — с неподвижной Землей и планетами, вращающимися вокруг экванта.
На рисунке 5 изображен упрощенный случай, в котором реальный деферент смещен по отношению к геоцентрическому положению. В связи с этим планета будет ближе к Земле при движении по нижней части деферента.
«Альмагест» («Великий трактат», или «Синтаксис математики»), названный так арабами от al-majist T(«великий»), был написан во II веке Птолемеем, родившимся в египетской Фиваиде и жившим в Александрии. Эта книга является лучшим текстом по астрономии классической Греции, она была основным учебником для многих византийских и исламских астрономов, а также в Средние века и эпоху Возрождения. Для Коперника «Альмагест» имел чрезвычайное значение, и он очень тщательно изучил эту книгу: несмотря на то что его гелиоцентрическая теория опровергала теорию Птолемея, Коперник всегда испытывал к этому автору большое уважение. Трактат состоит из 13 томов. В томе I венецианского издания Петра Лихтенштейна (1515), экземпляр которого был у Коперника, излагается аристотелевская космология. Том II посвящен проблемам суточного движения небесных тел. Том III описывает длительность года и движение Солнца, здесь вводится понятие эпицикла. В томах IV и V изложены движение Луны, лунный параллакс, размеры и расстояния до Солнца и Луны по отношению к размеру Земли. Том VI посвящен солнечным и лунным затмениям. Тома VII и VIII описывают движение неподвижных звезд. Тома с IX по XI содержат данные о планетах, наблюдаемых невооруженным глазом. В XII томе обсуждается сезонное и попятное движение планет, а в XIII — отклонение планетарного движения от эклиптики.
Фрагмент страницы «Альмагеста», на которой изображен графический способ построения гипотрохоид.
В «Альмагесте» Птолемей подробно описывает орбиту каждой планеты, делая различие между внутренними и внешними планетами. На те и другие он накладывает определенные ограничения, чтобы лучше объяснить их поведение. На самом деле птолемеева система состоит из набора независимых, по большей части, правил для каждого небесного тела. И действительно — у каждого тела есть собственный эквант, вокруг которого оно вращается, как можно видеть на рисунке 6.
Кривые вращения и тригонометрические соотношения часто играли основополагающую роль в развитии космологических моделей. Особый интерес представляет семейство кривых, использованных Птолемеем в его геоцентрической модели и сегодня очень хорошо изученных. Речь идет об эпитрохоидах. Интерес астрономов к ним объясняется тем, что это кривые вращения, получаемые движением одной окружности по другой. Система эпицикл-деферент, используемая Птолемеем, является их частным случаем. Птолемей использовал схему, аналогичную изображенной на рисунке и позволявшую получить эпитрохоиду с радиусом деферента RD и радиусом эпицикла re. В этом случае параметрическое уравнение эпитрохоиды будет выглядеть так:
χ(θ). RD cos(θ) - re cos(RD/re · θ); у (θ) = RD sin(θ) - re sin(RD/re · θ).
Система эпицикл-деферент для построения эпитрохоиды. Малая окружность — эпицикл (с радиусом re, = b), большая окружность — деферент (с радиусом а).
По пунктирной окружности радиуса RD = a + b движется центр эпицикла. Точка Р при движении рисует эпитрохоиду.
В отличие от других планет, Меркурий требует особого подхода. На рисунке 7 мы можем видеть, как Птолемей вводит еще одну окружность, чтобы сместить эквант планеты и придать ее движению дополнительные колебания. На рисунке изображено Солнце, вращающееся вокруг своего экванта. Дополнительная окружность с Землей в центре управляет движением точек 1 и 2, так что точка 2 производит деферент Меркурия. В точке 2 находится центр соответствующего эпицикла. В ходе своего движения Солнце в одной из точек касается пунктирной окружности, центром которой является наша планета.
РИС. 5
РИС. 6
РИС. 7
Существует множество примеров переработки, критики и комментариев идей Птолемея со стороны более поздних астрономов, в особенности мусульманских и европейских в эпоху позднего Средневековья. В связи с важностью их трудов и влиянием на них работ Птолемея следует упомянуть отдельно некоторых из них. Ибн аль-Хайсам (965-1040), известный на западе как Альхазен, также получил имя «второй Птолемей», поскольку он комментировал и расширил классическую работу; Иоанн Сакробоско (ок. 1195-1256), который в своем «Трактате о сфере» изложил модель Вселенной по Птолемею; персидский астроном Кут-ад-Дин Ширази (1236-1311), описавший новые модели движения планет, улучшив принципы Птолемея; и особенно Георг фон Пурбах (1423— 1461), который переработал «Альмагест» Птолемея и «Книгу о форме мира» Альхазена, добавив к ним тригонометрические выкладки.