Знание-сила, 2004 № 01 (919)
Знание-сила, 2004 № 01 (919) читать книгу онлайн
Ежемесячный научно-популярный и научно-художественный журнал.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Чтобы лучше уяснить суть квантовой телепортации, прибегнем к следующему примеру. Пусть у нас имеются две монеты. Мы не знаем, какой стороной повернута каждая из них — орлом или решкой, но известно, что повернуты они одинаково, то есть их положения скоррелированы. Одну из монет, не переворачивая, отправляют в другой город. Теперь между монетами нет никакой материальной связи, но как только я посмотрю, какой стороной лежит моя монета, я мгновенно узнаю положение другой.
Перед тем как я открою монету, мне могут принести третью монету (X) с неизвестным мне положением ее сторон и сказать лишь об относительном расположении этой и моей монеты — совпадают рисунки их сторон или нет Я сообщу об этом в соседний город владельцу находящейся там монеты, чтобы он знал, следует ему переворачивать монету или нет, после чего он может быть уверен, что его монета — точная копия монеты X. Между тем положение моей монеты и монеты X все время оставалось неизвестным. Я знал лишь об их относительной ориентации. В чем тут отличие от квантовой телепортации? Казалось бы, все одинаково.
Пусть читатель немножко поломает голову, прежде чем прочитает ответ!
А ответ состоит в следующем. С монетой X ничего не случилось — как лежала она на моем столе, так и лежит. Телепортирована лишь ее ориентация. Если сравнить монету X с отвезенной в соседний город, то обнаружится масса отличий — царапины, потертости и так далее. Это совершенно разные монеты с одинаковым расположением сторон. Иное дело в квантовом случае. Как уже говорилось выше, число фотонов и их поляризация связаны гейзенберговским соотношением неопределенностей — измерив поляризацию, мы потеряли счет числу фотонов, и мы не можем отрицать, что один из них исчез. С точки зрения повседневного опыта результат весьма удивительный, но в том же ряду, что и "размазка" скорости при измерении координаты. А поскольку в отличие от монет фотоны, если не считать их поляризации, абсолютно тождественны, неотличимы друг от друга, нельзя опровергнуть утверждение, что фотон Б — это перемещенный из точки 1 фотон X. В квантовой области своя логика, не совпадающая с нашей житейской.
Спор о сущности квантовой логики ведется со дня ее появления. Идея Эйнштейна о том, что парадоксальность квантовой логики обусловлена тем, что мы пока не умеем точно описывать природу, разделялась многими физиками и философами. Ведь статистическая "размазка" возникает всякий раз, когда некоторые параметры варьируются случайным образом. Как только глубинные причины вариаций становятся ясны, теория приобретает точный, как говорят физики, строго детерминированный характер. Эйнштейн и его последователи были уверены, что описание микроявлений станет тоже вполне однозначным в соответствии с "логикой здравого смысла", когда будет постигнута природа "заквантовых параметров". Позднее английский физик Белл доказал, что если параметры, отвечающие за статистический характер квантовой механики, действительно существуют в природе, то в ряде случаев результат измерений должен быть совсем не таким, каким его предсказывает квантовая теория. Однако очень точные измерения подтвердили предсказания квантовой теории, и сегодня мало кто сомневается в ее принципиально неустранимой статистичности. Это свойство природы, а не следствие неточности наших знаний.
Квантовая телепортация макрообъектов
Можно сказать, что квантовый способ телепортации является промежуточным между двумя описанными выше: "перекачка" состояния X на объект Б происходит мгновенно, как при транспортами нашей героини Джени из одной комнаты в другую, а подстройка состояния Б до полной идентичности с X совершается, как при винеровской телепортации.
Теоретически можно телепортировать любые объекты, хотя на опыте пока удалось "перебросить" только фотон и на расстояние всего в несколько десятков метров. На больших расстояниях трудно сохранить корреляцию эйнштейновской пары — она разрушается при столкновениях фотонов с частицами воздуха. Любое столкновение непредсказуемым образом изменяет поляризацию фотона, и никакого условия связи после этого уже нет. На очень большие расстояния можно рассчитывать л ишь в безвоздушном космосе или если использовать мощные пучки лазеров с огромным числом одинаково поляризованных фотонов. Часть фотонов избежит столкновений, и с их помощью можно осуществить телепортацию части лазерного луча.
Еще сложнее телепортировать протоны, взаимодействие которых в тысячи раз сильнее электромагнитного. Да и корреляцию установить здесь значительнотруднее. Если в опытах с фотонами применяются преломляющие кристаллы и отражающие зеркала — сравнительно простые средства, то во втором случае приходится использовать упругое рассеяние пучка протонов из ускорителя на жидководородной мишени, рассеяние на трудно изготавливаемых поляризованных мишенях с одинаковыми направлениями спинов всех атомов и тому подобное. Тем не менее группа физиков из подмосковной Дубны разработала схему эксперимента, позволяющего при сравнительно небольших затратах осуществить телепортацию протона в ближайшие два-три года.
В некоторых зарубежных лабораториях изучают возможность телепортации атомов — сложных систем, объединяющих рой электронов и тяжелое ядро. Создать устойчивую корреляцию квантовых состояний атомов — невероятно трудно. Впрочем, оптимисты убеждены, что в будущем удастся телепортировать даже молекулы.
— Ну, а зачем все это нужно? — возможно, спросит читатель. — Из чисто творческого интереса?
Однако не зря говорится, что нет ничего практичнее хорошей теории. Можно надеяться, что технология квантовой телепортации позволит создать принципиально новые, невиданные по быстроте и объему памяти вычислительные устройства — квантовые компьютеры. Вычислительная техника — компьютинг, как говорят специалисты — развивается умопомрачительными темпами. Каждые полтора — два года быстродействие компьютеров удваивается, а объем памяти возрастает в десятки раз. Несколько лет назад в Объединенном институте ядерных исследований была списана обслуживавшая весь институт вычислительная машина. Внушительных размеров комната, заставленная похожими на холодильники шкафами. Сегодня почти такую же вычислительную мощность имеет мой настольный помощник. Пять лет назад я приобрел неплохой персональный компьютер, а сегодня за ту же стоимость можно купить компьютер, внешне похожий, но заменяющий несколько десятков таких, как мой.
Но всему есть предел, и можно думать, что дальнейший прогресс компьютинга потребует каких-то радикальных новых идей и технологий. Одна из них — переход к квантовой кодировке информации. Основой современных вычислительных машин являются микроскопические ячейки, каждая из которых может находиться в одном из двух состояний. Одно из них принимается за нуль, другое за единицу. Комбинацией нулей и единиц можно закодировать любую информацию. Вопрос только в том, сколько для этого нужно бинарных ячеек и сколько времени будут затрачивать электрические импульсы на их многократную перезарядку в процессе работы компьютера. Вот тут и прячется ахиллесова пята современного компьютинга. Нельзя же до бесконечности увеличивать число и плотность расположения счетных ячеек!
В квантовом компьютере в качестве нуля и единицы будут служить квантовые состояния, каждое из которых заменяет множество бинарных ячеек. Квантовая телепортация фотонов нужна для установления сверхбыстрой связи между квантово-коррелированными счетными ячейками. Управляющие сигналы будут многократно телепортироваться в сотовой паутине таких ячеек, а в конце по сигналу, передаваемому обычным электронным импульсом или световым лучом, если компьютер будет оптическим, откроется набор результирующих состояний — готовое решение задачи.
Очень заманчивая идея. Вот только как ее воплотить в жизнь, во многом остается еще неясным. Пока квантовые компьютеры существуют лишь на бумаге и с огромным количеством вопросов. Но как говорит восточная пословица, дорогу осилит идущий!