Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологическо
Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологическо читать книгу онлайн
В книге рассказывается «о том, как устроена биосфера и что осталось от биосфер геологического прошлого». Показан основополагающий вклад В. И. Вернадского в учение о биосфере и о роли жизни в геологических процессах. Большое внимание уделяется новейшим научным открытиям, в частности удивительным оазисам жизни, обнаруженным в рифтовых зонах Мирового океана на глубине 1500—3000 м.
Автор: А. В. ЛАПО — кандидат геолого-минералогических наук, старший научный сотрудник Всесоюзного научно-исследовательского геологического института имени А. П. Карпинского в Ленинграде. Специалист в области геологии угольных месторождений, биогеохимии и общей экологии. Автор свыше 80 научных работ.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Океанские конкреции иногда считают абиогенными, однако исследования показали, что живое вещество играет важную роль в их формировании. Железо в водной толще интенсивно потребляется фитопланктоном. Осаждение железа и марганца в значительной мере осуществляется фильтрующими организмами планктонной и донной пленок жизни. Дальнейшее преобразование соединений этих элементов на дне морей и океанов производится бактериями, многочисленные чехлы которых были найдены в конкрециях.
На основании опыта этих исследований, накопленного за последние десятилетия, Т. В. Аристовская произвела ревизию выводов А. Г. Вологдина. Для изучения ею были выбраны образцы нескольких железистых минералов: лимонита, гетита и магнетита. Исследование производилось микроскопически в проходящем свете после специальной подготовки препаратов. Что же увидела Татьяна Вячеславовна?
Гетит и лимонит оказались полностью состоящими из железистых отложений, повторяющих очертания клеток замурованных в них железобактерий. Сравнивая микроскопическую структуру минеральных масс с формами роста железобактерий, можно было обнаружить черты сходства между остатками микроорганизмов, слагающих минералы, и фрагментами колоний некоторых современных бактерий. Магнетит же в противоположность гетиту и лимониту показал полное отсутствие бактериальной структуры.
Т. В. Аристовская изучала только железистые породы. Марганцевые руды палеогена месторождений Чиатуры и Тетрицкаро были исследованы ранее московским геологом, доктором геолого-минералогических наук Лазарем Ефимовичем Штеренбергом. В препаратах из руд, обработанных щавелевой кислотой, Л. Е. Штеренберг также описал биогенные структуры, сходные с колониями уже известного нам рода Metallogenium.
Интенсивное исследование докембрийских железных руд различных районов СССР в настоящее время производится в Институте геологических наук АН УССР Владимиром Ивановичем Лазуренко. По его данным, количество найденных чехлов железобактерий в докембрийских рудах исчисляется тысячами. Рудные прослои в полосчатых рудах иногда оказываются нацело сложенными остатками железобактерий.
После этих работ А. Г. Вологдина, Т. В. Аристовской, Л. Е. Штеренберга и В. И. Лазуренко можно считать доказанным биогенное происхождение не только современных железомарганцевых руд, но и их древних аналогов, включая докембрийские джеспилиты. При этом показано, что образование биогенного вещества железистых и марганцевых руд происходит несколько иначе, чем карбонатных, кремнистых и фосфатных пород: решающую роль здесь играет не планктонная, а донная пленка жизни. Однако по условиям формирования они сходны: во всех случаях накопление биогенного вещества происходит в водных экосистемах — в континентальных водоемах или в море; определяющую роль на стадии седиментогенеза и диагенеза играет концентрационная функция живого вещества.
Вопрос о роли жизни в формировании аллитов и солей остается более дискуссионным.
Аллитами, или глиноземистыми породами, называют горные породы, богатые свободным окислом алюминия (глиноземом). К их числу относится алюминиевое сырье — бокситы, горная порода, состоящая в основном из минералов гидроокиси алюминия. Как и фосфориты, бокситы очень разнообразны по своему внешнему виду. Известны бокситы черного, белого, желтого, красного и вишневого цветов, пористые и плотные, глинистые и песчаные. На первом курсе вуза на практических занятиях по общей геологии студентам в составе учебной коллекции иногда подсовывают битый кирпич — и неофиты от геологии дружно определяют его как боксит. Когда-то такой грех случился и со мной…
Название «бокситы» связано отнюдь не с популярным видом спорта, а с местечком Бо на юге Франции, где бокситы впервые были найдены в 1821 г. Согласно господствующей точке зрения бокситы представляют собой ископаемую кору выветривания пород алюмосиликатного состава или продукты ее переотложения. Первые сведения о том, что расщепление алюмосиликатов может осуществляться биогенно за счет деятельности диатомовых водорослей, были получены экспериментально английскими учеными Дж. Мерреем и Р. Ирвином еще в конце прошлого века. Впоследствии В. И. Вернадский [76] и его ученики А. П. Виноградов и Е. А. Бойченко повторили эти эксперименты. Их результаты не оставляли места для сомнений: диатомовые водоросли действительно расщепляют алюмосиликаты и используют кремнезем для построения своих панцирей; глинозем же остается в водной среде в виде коллоидного раствора. Еще в самом начале нашего века В. И. Вернадский сделал вывод о большом, порообразующем значении этого процесса [77].
Бокситы, как известно, содержат значительное количество окиси железа. Поэтому в 1903 г. Т. Холландом было высказано предположение, что процесс формирования бокситов может быть связан с деятельностью железобактерий. Однако это было только предположением, не подтвержденным фактическим материалом — до тех пор, пока А. Г. Вологдин не обратил внимание на то, что остатки железобактерий, помимо железистых пород, имеют широкое распространение и в аллитах, где они составляют до 40—45% объема породы.
Прошло еще несколько десятилетий, и во Всесоюзном геологическом институте им. А. П. Карпинского стали проводиться эксперименты по биогенному разложению вулканических пород бактериями. На основании этих опытов Л. Е. Крамаренко и О. Ф. Сафонова сделали вывод: в присутствии микроорганизмов полное превращение габбро-лабрадорита в глинозем в аэробной среде происходит за один год, а в анаэробной — за 7 лет. В анаэробной среде отложения глинозема без участия микроорганизмов вообще не происходит. Итак, один из возможных путей образования бокситов — разложение абиогенного вещества непосредственно микроорганизмами.
Однако выветривание первичных пород живое вещество регулирует и опосредствованно — продуктами своего опада (необиогенным органическим веществом). Исследования почвоведов показали, что в современном выветривании в зоне муссонного климата органическое вещество гниющей подстилки тропического леса играет огромную роль. На этом основании известный советский геолог, вице-президент АН СССР, академик Александр Леонидович Яншин делает вывод, что «главная эпоха бокситообразования, эпоха разрушения горных пород, при котором кремнезем выносится, а глинозем остается в коре выветривания, образуя крупные месторождения алюминиевых руд — бокситов, могла наступить только после появления покрытосеменной растительности, примерно 100 млн. лет назад. С появлением покрытосеменных и образованием формации тропического леса почва в низких широтах стала получать кислоты, которых раньше в ней не было. Поэтому поиски бокситов в более древних корах выветривания, очевидно, будут малорезультативными».
Так учение в роли жизни в геологических процессах помогает геологам искать рудные залежи в отложениях определенного возраста.
Помимо деструктивной, при формировании бокситов проявляется и концентрационная функция живого вещества: известно, что некоторые растения накапливают алюминий (например, зола плаунов содержит его до 30%). Геологический аспект этой проблемы первым осознал академик Лев Семенович Берг (1876—1950), человек, чью специальность определить нелегко. Он был географом и ихтиологом, биологом-теоретиком и историком науки. Геологом Л. С. Берга обычно не считают, но среди его работ есть и такие: «О предполагаемой периодичности в образовании осадочных пород (1944), «Жизнь и почвообразование на докембрийских материках» (1944), «О происхождении уральских бокситов» (1945), «Почвы и водные осадочные породы» (1945), «О происхождении железных руд типа криворожских» (1947), «Солнечная активность в геологическом прошлом» (1947)… Этими работами Л. С. Берг вписал свое имя и в анналы геологической науки.
Лев Семенович предполагал, что бокситы могли образоваться путем минерализации и переотложения остатков высших растений, содержащих значительное количество глинозема. Отложение бокситов, по мнению Берга, происходило на суше, в болотах или в мелких заболоченных пресноводных водоемах. Эти соображения у геологов долго не находили понимания.