-->

Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологическо

На нашем литературном портале можно бесплатно читать книгу Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологическо, Лапо Андрей Витальевич-- . Жанр: Природа и животные / Химия / Биология / Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологическо
Название: Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологическо
Дата добавления: 16 январь 2020
Количество просмотров: 285
Читать онлайн

Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологическо читать книгу онлайн

Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологическо - читать бесплатно онлайн , автор Лапо Андрей Витальевич

В книге рассказывается «о том, как устроена биосфера и что осталось от биосфер геологического прошлого». Показан основополагающий вклад В. И. Вернадского в учение о биосфере и о роли жизни в геологических процессах. Большое внимание уделяется новейшим научным открытиям, в частности удивительным оазисам жизни, обнаруженным в рифтовых зонах Мирового океана на глубине 1500—3000 м.

Автор: А. В. ЛАПО — кандидат геолого-минералогических наук, старший научный сотрудник Всесоюзного научно-исследовательского геологического института имени А. П. Карпинского в Ленинграде. Специалист в области геологии угольных месторождений, биогеохимии и общей экологии. Автор свыше 80 научных работ.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 33 34 35 36 37 38 39 40 41 ... 51 ВПЕРЕД
Перейти на страницу:

Седиментогенез — следующая стадия процесса литогенеза. Какую же роль играет здесь живое вещество?

Еще несколько десятилетий назад, не мудрствуя лукаво, полагали, что роль живых организмов сводится к поставке в осадок своих бренных остатков, каковыми и сложены некоторые известняки, кремнистые породы, ископаемые угли. Лишь в 70‑е годы выяснилось, что в водных экосистемах живое вещество, помимо этого, регулирует весь механизм очистки вод как от терригенной, вулканогенной и другой неорганической взвеси, так и от биогенного детрита. Процесс этот получил название биофильтрации. Мощность фильтра живого вещества огромна. Так, суммарная суточная потребность в пище фильтраторов Мирового океана составляет 10 млрд. т, а взвешенный сток всех рек мира за год — не за сутки! — равняется 18 млрд. т.

В предыдущих главах мы уже упоминали об исследованиях мидиевых банок Белого моря, проведенных Кириллом Александровичем Воскресенским в 40‑е годы. Продемонстрировав поразительную способность мидий быстро и эффективно осаждать из морской воды взвешенные в ней частицы, К. А. Воскресенский сделал знаменательный вывод: «Факт вовлечения в придонную циркуляцию значительного по толщине слоя воды в соединении с активным отнятием из него взвесей населенным дном заставляет пересмотреть процессы осадочной дифференциации. Закон Стокса и его модификации, учитывающие лишь закономерности механики, физики и химии, становятся недостаточными в динамическом поле, где проявляют себя биомассы фильтраторов. Вблизи населенного дна относительно простые законы снимаются более высокими биогидрологическими».

Процессы осадочной дифференциации действительно пришлось пересматривать, когда в океанологии стали применяться седиментационные ловушки — специальные приспособления, служащие для накопления вещества, поступающего в осадок. Уже первые исследования такого рода показали, что осаждение материала в море происходит не «частица за частицей» (как предполагалось умозрительно), а главным образом в виде фекальных пеллет размером от десятков микронов до 1—4 мм. Содержание таких пеллет в осадках, как правило, превышает 60%, а в некоторых случаях осадки сложены пеллетами полностью!

Исследования показали, что биофильтрация и соответственно биоседиментация (от англ. sedimentation — осаждение) осуществляется в океане главным образом многоклеточными животными двух пленок жизни — планктонной и бентосной. Некоторый вклад в биоседиментацию вносит и нектон. Наглядный пример нектонных фильтраторов — киты, процеживающие морскую воду для добывания криля.

Процесс биофильтрации зоопланктоном ограничен главным образом верхним пятисотметровым слоем водной толщи. Наиболее активными фильтраторами здесь являются мелкие ракообразные: веслоногие и ветвистоусые рачки, остракоды, эвфаузииды (криль), а также коловратки, простейшие и моллюски. Большинство организмов зоопланктона производит безвыборочное удаление из морской воды взвешенных частиц с минимальным размером 1—2 мкм, а некоторые организмы — даже более мелких. Благодаря механизму биофильтрации все мелкие взвешенные частицы без различия их генезиса объединяются в пеллеты, покрытые защитной оболочкой из органического вещества, и выделяются в окружающую среду. Скорость их осаждения в морской воде составляет в среднем около 100 м/сут, что в сотни раз больше, чем скорость осаждения исходных частиц взвеси. При прохождении через водную толщу пеллеты повторно многократно используются в качестве пищи более глубоководными организмами (в том числе и нектонными) и, таким образом, переупаковываются для дальнейшей транспортировки к морскому дну. Роль нектонных организмов в этих превращениях особенно велика в апвеллинговых сгущениях жизни.

В огромных масштабах биофильтрацию осуществляют и организмы другой пленки жизни — бентосной. На шельфе фильтрационная система бентоса является наиболее развитой; здесь она по своей производительности местами даже превосходит фильтрационную систему зоопланктона — в целом по океану более мощную. Основными «исполнителями» здесь являются массовые виды моллюсков, а также так называемые морские желуди — усоногие рачки балянусы. Бентосные фильтраторы, как и планктонные, фильтрование производят безвыборочно, однако между ними существует и различие. Заключается оно в том, что бентосные организмы отфильтровывают более крупные частицы (вплоть до песка), которые не улавливаются зоопланктоном. При этом тонкость очистки и эффективность фильтрации остаются очень высокими (не зря моллюски уже давно используются в системах биологической очистки водной среды). Так, каждая мидия за свою жизнь прокачивает через себя 200 тыс. л воды, а все мидии Черного моря профильтровывают весь его объем за 1 год 5 месяцев. Цифра сама по себе впечатляющая; однако если мы вспомним, что весь Мировой океан профильтровывается зоопланктоном всего за полгода, то убедимся, что бентосный биофильтр по своей мощности планктонному уступает. Что касается балянусов, то они в пределах своих колоний ежегодно образуют 8—16 мм осадков, из которых на пеллеты приходится 5—13 мм, а на раковинный материал — 3 мм.

Таким образом, процесс седиментогенеза в водных бассейнах (а ведь именно там происходит формирование большей части осадочных пород!) регулируется живым веществом. Живые организмы образуют своеобразный конвейер, по которому в форме пеллет передаются частицы взвеси в ходе седиментогенеза. Достигнув морского дна, пеллеты перерабатываются бентосными организмами и распадаются. Роль пеллетного транспорта, таким образом, затушевывается, и при чисто механическом подходе остается неясным, как при данном гидродинамическом режиме могли попасть в осадки столь мелкие частицы. Подтверждается давний вывод К. А. Воскресенского: «Закон Стокса и его модификации… становятся недостаточными в динамическом поле, где проявляют себя биомассы фильтраторов».

Биофильтрацию осуществляют, как известно, многоклеточные животные. Роль растений в седиментогенезе значительно скромнее: они лишь поставляют исходный материал для некоторых типов горных пород (ископаемые угли) да служат механическим барьером, тормозящим потоки терригенных частиц и обусловливающим их седиментацию. В водных экосистемах роль такого барьера играют заросли водорослей и водных цветковых растений, на суше — разнообразные высшие растения. Хорошо развитый травяной покров в саваннах и прериях задерживает эоловые частицы. В результате корни растений перекрываются пылью, а верхняя часть растений отмирает. Затем появляется новая растительность, и процесс повторяется. По некоторым данным, именно таким образом накапливаются на суше мощные лёссовые толщи. Значительную роль в седиментогенезе на континентах играют и некоторые почвенные насекомые (термиты и муравьи), поставляющие на поверхность осадочный материал буквально из-под земли. Осадконакопление в этом случае — очередной парадокс! — происходит не сверху вниз, как обычно, а снизу вверх. Предполагают, что в тропической Африке термиты таким образом сформировали слой глинистых песков мощностью 4 м.

Многообразна роль живого вещества в седиментогенезе, но главным, конечно, является процесс биофильтрации. Резюмируя достижения биоседиментологии, член-корреспондент АН СССР Александр Петрович Лисицын сказал: «В «живом океане» биос и связанный с ним поток пеллетов определяют процессы седиментогенеза, подготовки биогенного осадочного материала, его транспортировки в пеллетах и отложение, а также дальнейшие преобразования пеллетного материала с использованием заключенной в пеллетах органики в ходе диагенеза и катагенеза».

Действительно, и дальнейшие преобразования осадков в значительной мере определяются деятельностью живого вещества. Даже после попадания в осадок странствия его частиц по кишечным трактам живых организмов не прекращаются: верхний слой осадков мощностью до 1 м интенсивно перерабатывается илоедами. В современных морских экосистемах наиболее активными илоедами являются кольчатые черви (аннелиды), отдельные виды которых способны пропустить за год до 1,5 м осадков «через кишечную тюрьму». (Заболоцкий).

1 ... 33 34 35 36 37 38 39 40 41 ... 51 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название