-->

Логика. Учебник. 6-е издания

На нашем литературном портале можно бесплатно читать книгу Логика. Учебник. 6-е издания, Кириллов Вячеслав Иванович-- . Жанр: Учебники. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Логика. Учебник. 6-е издания
Название: Логика. Учебник. 6-е издания
Дата добавления: 16 январь 2020
Количество просмотров: 324
Читать онлайн

Логика. Учебник. 6-е издания читать книгу онлайн

Логика. Учебник. 6-е издания - читать бесплатно онлайн , автор Кириллов Вячеслав Иванович

В учебнике, подготовленном в соответствии с государственным образовательным стандартом для юридических вузов, учтены особенности преподавания курса логики студентам высших юридических учебных заведений. Использованы материалы из области правовых наук, показано значение логических законов, приемов и операций в работе юриста. Даны литература, предметный указатель и перечень логических символов. Данное издание является шестым, переработанным и дополненным. Учебник может быть использован не только студентами-юристами, но также студентами других гуманитарных специальностей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 3 4 5 6 7 8 9 10 11 ... 66 ВПЕРЕД
Перейти на страницу:

Имена предметов обозначают единичные предметы, явления, события или их множества. Объектом исследования в этом случае могут быть как материальные (самолет, молния, сосна), так и идеальные (воля, правоспособность, мечта) предметы.

По составу различают имена простые, которые не включают других имен (государство), и сложные, включающие другие имена (спутник Земли). По денотату имена бывают единичные и общие. Единичное имя обозначает один объект и бывает предоставлено в языке именем собственным (Аристотель) или дается описательно (самая большая река в Европе). Общее имя обозначает множество, состоящее более чем из одного объекта; в языке оно бывает представлено нарицательным именем (закон) либо дается описательно (большой деревянный дом).

Имена признаков — свойств или отношений — называются предикаторами. В предложении они обычно выполняют роль сказуемого (например, «быть синим», «бегать», «дарить», «любить» и т. д.). Число имен предметов, к которым относится предикатор, называется его местностью. Предикаторы, выражающие свойства, присущие отдельным предметам, называются одноместными (например, «небо синее»), Предикаторы, выражающие отношения между двумя и более предметами, называются многоместными. Например, предикатор «любить» относится к двухместным («Мария любит Петра»), а предикатор «дарить» — к трехместным («Отец дарит книгу сыну»).

Предложения — это имена для выражений языка, в которых нечто утверждается или отрицается. По своему логическому значению они выражают истину либо ложь.

Алфавит языка логики предикатов включает следующие виды знаков (символов):

1) а, b, с, ... — символы для единичных (собственных или описательных) имен предметов; их называют предметными постоянными, или константами;

2) х, у, z, ... — символы общих имен предметов, принимающие значения в той или другой области; их называют предметными переменными;

3) Р1, Q1, R1, ... — символы для предикатов, индексы над которыми выражают их местность; их называют предикатными переменными;

4) р, q, r, ... — символы для высказываний, которые называют пропозициональными переменными (от латинского propositio — «высказывание»);

5) ∀, Ǝ — символы для количественной характеристики высказываний; их называют кванторами: квантор общности; он символизирует выражения — все, каждый, всякий, всегда и т. п.; Ǝквантор существования; он символизирует выражения — некоторый, иногда, бывает, встречается, существует ит.п.;

6) логические связки:

∧— конъюнкция (связка «и»);

∨— дизъюнкция (связка «или»);

→ — импликация (связка «если..., то...»);

≡ — эквиваленция, или двойная импликация (связка «если, и только если..., то...»);

˥ — отрицание («неверно, что...»).

Технические знаки языка: (,) — левая и правая скобки.

Других знаков данный алфавит не включает. Допустимые, т. е. имеющие смысл в языке логики предикатов выражения называются правильно построенными формулами — ППФ. Понятие ППФ вводится следующими определениями:

1. Всякая пропозициональная переменная — р, q, r,... есть ППФ.

2. Всякая предикатная переменная, взятая с последовательностью предметных переменных или констант, число которых соответствует ее местности, является ППФ: А1 (х), А2 (х, у), А3 (х, у, z), Аn (х, у, …, n), где А1, А2, А3, ..., Аn — знаки метаязыка для предикатов.

3. Для всякой формулы с предметными переменными, в которой любая из переменных связывается квантором, выражения ⊃хА (х) и Ǝ хА (х) также будут ППФ.

4. Если А и В — формулы (А и В — знаки метаязыка для выражения схем формул), то выражения:

А ∧В,

А ∨В,

А → В,

А ≡ В,

˥А, ˥В

также являются формулами.

5. Любые иные выражения, помимо предусмотренных в п. 1—4, не являются ППФ данного языка.

Язык логики предикатов может быть использован в дальнейшем изложении для анализа отдельных фрагментов естественного языка.

Вопросы для самопроверки

1. Что такое язык? Приведите определение.

2. Какие языки относятся к естественным и какие к искусственным?

3. Что представляет собой язык логики предикатов? Какие знаки (символы) включает алфавит этого языка?

§ 5. ИСТОРИЯ ЛОГИКИ (КРАТКИЙ ОЧЕРК)

Логика, изучающая познающее мышление и применяемая как средство познания, возникла и развивалась как философская наука. Она сформировалась более двух тысяч лет назад, в IV в. до н. э. Ее основателем является древнегреческий философ Аристотель (384—322 гг. до н. э.). В своих логических трудах, получивших общее название «Органон» (греч. «орудие, инструмент познания»), Аристотель сформулировал основные законы мышления: тождества, противоречия и исключенного третьего, описал важнейшие логические операции, разработал теорию понятия и суждения, обстоятельно исследовал дедуктивное (силлогистическое) умозаключение. Аристотелевское учение о силлогизме составило основу одного из направлений современной математической логики — логики предикатов.

Важным этапом в развитии учения Аристотеля явилась логика античных стоиков (Зенон, Хрисипп и др.), дополнившая аристотелевскую теорию силлогизма описанием сложных умозаключений. Логика стоиков — основа другого направления математической логики: логики высказываний.

Среди других античных мыслителей, развивающих и комментирующих учение Аристотеля, следует назвать Галена, Порфирия, Боэция, сочинения которого длительное время служили основными логическими пособиями.

Логика развивалась и в Средние века, однако схоластика исказила учение Аристотеля, приспособив его для обоснования религиозной догматики.

Значительны успехи логической науки в Новое время. Важнейшим этапом в ее развитии явилась теория индукции, разработанная английским философом Ф. Бэконом (1561—1626). Бэкон разработал методы научной индукции, систематизированные впоследствии английским философом и логиком Дж. С. Миллем (1806—1873).

Дедуктивная логика Аристотеля и индуктивная логика Бэкона — Милля составили основу общеобразовательной дисциплины, которая в течение длительного времени была обязательным элементом европейской системы образования и составляет основу логического образования в настоящее время.

Эту логику принято называть формальной, так как она возникла и развивалась как наука о формах мышления. Ее называют также традиционной, или аристотелевской, логикой.

Дальнейшее развитие логики связано с именами французского философа Р. Декарта (1596—1650), внесшего существенный вклад в дедуктивную логику[10]; немецкого философа Г. Лейбница (1646—1716), сформулировавшего закон достаточного основания, выдвинувшего идею математической логики, которая получила развитие значительно позднее; немецкого философа И. Канта (1724— 1804) и многих других европейских философов и ученых.

Ряд оригинальных логических идей выдвинули и развили мыслители стран Востока: Ибн Сина (Авиценна), Ибн Рушд (Аверроэс) и др.

Значительны заслуги в развитии логики русских философов и ученых. Ряд оригинальных идей выдвинули М. В. Ломоносов (1711—1765), А. Н. Радищев (1749—1802), Н. Г. Чернышевский (1828—1889). Известны своими новаторскими идеями в теории умозаключений русские логики М. И. Каринский (1840—1917) и Л. В. Рутковский (1859—1920). Одним из первых начал развивать логику отношений философ и логик С. И. Поварнин (1870—1952).

1 ... 3 4 5 6 7 8 9 10 11 ... 66 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название