-->

Логика. Учебник. 6-е издания

На нашем литературном портале можно бесплатно читать книгу Логика. Учебник. 6-е издания, Кириллов Вячеслав Иванович-- . Жанр: Учебники. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Логика. Учебник. 6-е издания
Название: Логика. Учебник. 6-е издания
Дата добавления: 16 январь 2020
Количество просмотров: 324
Читать онлайн

Логика. Учебник. 6-е издания читать книгу онлайн

Логика. Учебник. 6-е издания - читать бесплатно онлайн , автор Кириллов Вячеслав Иванович

В учебнике, подготовленном в соответствии с государственным образовательным стандартом для юридических вузов, учтены особенности преподавания курса логики студентам высших юридических учебных заведений. Использованы материалы из области правовых наук, показано значение логических законов, приемов и операций в работе юриста. Даны литература, предметный указатель и перечень логических символов. Данное издание является шестым, переработанным и дополненным. Учебник может быть использован не только студентами-юристами, но также студентами других гуманитарных специальностей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 40 41 42 43 44 45 46 47 48 ... 66 ВПЕРЕД
Перейти на страницу:

Схема модифицированного рассуждения по методу остатков:

1) АВС вызывает abcd.

2) А вызывает а.

3) В вызывает b.

4) С вызывает с.

_______________

Вероятно, существует некий X, который вызывает d.

Подобно другим индуктивным выводам метод остатков дает, как правило, проблематичное знание. Степень вероятности заключения в таком выводе определяется, во-первых, точностью знаний о предшествующих обстоятельствах, среди которых идет поиск причины исследуемого явления, во-вторых, точностью знания о степени влияния каждой из известных причин на совокупный результат. Приблизительный и неточный перечень предшествующих обстоятельств, как и неточное представление о влиянии каждой из известных причин на совокупное действие, может привести к тому, что в заключении вывода в качестве неизвестной причины будет представлено не необходимое, а лишь сопутствующее обстоятельство.

Рассуждения по методу остатков нередко используются в процессе расследования преступлений, главным образом в тех случаях, когда устанавливают явную несоразмерность причин исследуемым действиям. Если действие по своему объему, масштабу или интенсивности не соответствует известной причине, то ставится вопрос о существовании каких-то других обстоятельств.

Например, по уголовному делу о хищении товаров со склада обвиняемый признал факт хищения и показал, что он в одиночку вынес со склада похищенную вещь. Проведенной проверкой было установлено, что вынести такую тяжелую вещь не под силу одному человеку. Следователь пришел к выводу об участии в хищении других лиц, в связи с чем менялась и квалификация деяния.

Рассмотренные методы установления причинных связей по своей логической структуре относятся к сложным рассуждениям, в которых собственно индуктивные обобщения строятся с применением дедуктивных выводов. Опираясь на свойства причинной связи, дедукция выступает логическим средством элиминации (исключения) случайных обстоятельств, тем самым она логически корректирует и направляет индуктивное обобщение.

Взаимосвязь индукции и дедукции обеспечивает логическую состоятельность рассуждений при применении методов, а точность выраженного в посылках знания определяет степень обоснованности получаемых заключений.

Вопросы для самопроверки

1. Какие методы установления причинной связи изучает логика? На каких принципах причинно-следственных связей они основаны?

2. Что представляют собой метод единственного сходства и метод единственного различия? Приведите их схемы, укажите условия, повышающие вероятности вывода.

3. Приведите схему объединенного метода сходства и различия. В чем его преимущество по сравнению с этими методами, применяемыми отдельно?

4. В чем особенности метода сопутствующих изменений? На каком свойстве причинно-следственной связи он основан? Приведите его схему.

5. Что такое метод остатков? В каких случаях он применяется? Приведите схему.

§ 5. СТАТИСТИЧЕСКИЕ ОБОБЩЕНИЯ

Особым видом умозаключений неполной индукции являются статистические обобщения, связанные с анализом массовых событий. К ним относятся, например, массовые транспортные перевозки пассажиров и грузов, рождаемость и смертность людей, распространение заболеваний, транспортные происшествия, динамика преступлений и многие другие.

Учитывая трудности выявления причинных зависимостей, анализ таких массовых событий позволяет установить устойчивое распределение интересующих исследователя случайных признаков. Количественная информация, выражающая устойчивые тенденции развития, имеет важное практическое значение для правильной организации обслуживания населения, профилактических мероприятий, борьбы с преступностью и т. п. Анализ массовых событий ведется чаще всего путем не сплошного, а выборочного исследования отдельных групп или образцов и логического переноса полученных результатов на все их множество. Вывод в этом случае протекает в форме статистического обобщения.

Статистическое обобщение — это умозаключение неполной индукции, в котором установленная в посылках количественная информация о частоте определенного признака в исследуемой группе (образце) переносится в заключении на все множество явлений этого рода.

В отличие от индукции через перечисление при отсутствии противоречащего случая в посылках статистического умозаключения фиксируется следующая информация: (1) общее число составляющих исследуемую группу, или образец случаев; (2) число случаев в которых присутствует интересующий исследователя признак; (3) частота проявления интересующего признака.

Для построения схемы статистического обобщения введем условные обозначения: S — исследуемый образец; р — интересующий исследователя признак; m — общее число наблюдаемых случаев (элементов образца); n — число благоприятных случаев, когда явление обладает признаком р; f(р) — частота признака р; К — популяция, или множество явлений, на которое распространяется частота признака.

Частота появления признака р в образце S представляет собой отношение числа благоприятных случаев n к общему числу исследованных явлений m:

f(p) = n/m.

Например, статистическая информация о совершении такого рода преступлений, как хулиганство, показывает, что 95 из 100 случаев хулиганских действий совершаются в состоянии алкогольного опьянения. Значит, частота хулиганства, связанная с алкогольным опьянением, определяется как 95/100, т. е. равна 95%.

Частота появления признака в статистических описаниях принимает числовое значение в интервале между 0 и 1: 0 < f(p) < 1. Это объясняется тем, что в статистическом образце S число случаев появления признака (n) всегда меньше общего числа наблюдаемых элементов (m). Поскольку m > n, тем самым f(p) всегда будет меньше единицы, но больше нуля.

В том случае, когда f(p) = 0, это значит, что среди наблюдаемых не обнаружено ни одного явления, обладающего этим признаком. На этой основе может быть построено обычное индуктивное обобщение с отрицательным заключением: поскольку ни одно S не обладает свойством р, значит, можно заключить, что весь класс К не обладает этим свойством. Точно так же и в случае f(p) = 1 можно построить обычную индуктивную генерализацию с утвердительным заключением. Поскольку число случаев появления признака (n) равно числу всех исследованных (m), т. е. n = m, значит, каждое S обладает р. Отсюда заключают, что весь класс К обладает этим признаком.

Схема статистического обобщения:

S имеет f(p).

S ⊂К.

________

Вероятно, К имеет f(p).

Это означает: признак р появляется в образце S с частотой f; образец S является подмножеством популяции К, которая по числу элементов больше S; отсюда следует, что признак р будет встречаться в популяции К с частотой f.

Статистическое обобщение, являясь выводом неполной индукции, относится к недемонстративным умозаключениям. Логический переход от посылок к заключению дает лишь проблематичное знание. Степень обоснованности статистического обобщения зависит от специфики исследованного образца: его величины по отношению к популяции и представительности (репрезентативности). Если образец по объему приближается к популяции, тем основательнее обобщение, поскольку возможность ошибки становится минимальной. Репрезентативность образца означает меру его представительности: насколько разнообразие элементов в образце отражает их разнообразие в популяции.

Тщательность статистического описания исследуемого образца и логически корректный перенос частоты признака на популяцию обеспечивают высокую вероятность и тем самым практическую эффективность статистических обобщений в различных областях науки, культуры, производства, правовой деятельности.

1 ... 40 41 42 43 44 45 46 47 48 ... 66 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название