Радиоэлектроника-с компьютером и паяльником
Радиоэлектроника-с компьютером и паяльником читать книгу онлайн
Книга является практическим введением в изучение начал радиоэлектроники с помощью компьютера и самостоятельного технического творчества. В популярной форме рассказывается о радиоэлектронике, поясняется смысл используемых понятий и явлений, приводятся занимательные эпизоды из истории изобретений и открытий. Основу практической части составляют описания простейших и в тоже время интересных и полезных самоделок из электронных наборов Мастер КИТ. Даются подробные советы по их сборке, наладке и применению в быту. Параллельно принципы действия рассматриваемых устройств раскрываются путем моделирования их схем на компьютере в простой программе игрового типа — Electronics Workbench.
Для широкого круга читателей, которые хотели бы подружиться с радиоэлектроникой, сев за компьютер и взяв в руки паяльник.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В зависимости от назначения различают аудио- и видеоголовки (рис. 7).
Рис. 7. Магнитные головки:
а — аудио; б — видео; в — УГО
Конструкции головок очень разнообразны, например, для обеспечения записи стереозвука универсальная головка имеет четыре рабочих зазора.
Головки характеризуют числом витков обмотки, шириной рабочего зазора и шириной дорожки, резонансной частотой, амплитудой тока записи и выходным напряжением воспроизведения, магнитной проницаемостью и индукцией насыщения.
В настоящее время, помимо чисто магнитных (индукционных) устройств, применяют и более сложные магнитоэлектронные головки (магнитооптические, магниторезистивные, магнитодиоды, элементы Холла и Виганда). Особый интерес представляют миниатюрные тонкопленочные магнитные головки, изготовляемые по интегральной технологии.
Электрический трансформатор (от лат. transformare — преобразовывать) является статическим (без подвижных частей) электромагнитным аппаратом, предназначенным для преобразования одного переменного напряжения в другое той же частоты.
Простейший трансформатор представляет собой две индуктивные катушки (обмотки), связанные своими магнитными полями через общий (замкнутый) магнитопровод. Если первичную обмотку подключить к источнику переменного синусоидального напряжения некоторой частоты (например, 50 Гц), то переменный ток, протекающий по этой обмотке, создаст в магнитопроводе переменный магнитный поток, также изменяющийся по синусоидальному закону с той же частотой. Этот переменный поток, пронизывая витки вторичной обмотки, индуцирует в ней переменную ЭДС той же частоты.
В зависимости от отношения числа витков первичной и вторичной обмоток, которое называется коэффициентом трансформации, могут встретиться три случая. Величина наведенной ЭДС может быть меньше первичного напряжения — понижающий трансформатор (число витков первичной обмотки больше, чем вторичной), больше его — повышающий трансформатор (обратное соотношение числа витков) и, в частном случае, равна ему — разделительный трансформатор. По назначению и в зависимости от конструктивных особенностей различают трансформаторы: силовые, согласующие, выходные, импульсные, измерительные и др. (рис. 8).
Рис. 8. Трансформаторы:
а — внешний вид; б — УГО; в — компоненты EWB
Трансформаторы малой мощности делятся по конструктивному выполнению магнитопроводов на три группы: броневые, стержневые и тороидальные. Броневые и тороидальные трансформаторы применяются на частотах 50…1000 Гц, тороидальные — на частотах 400 Гц-100 кГц и выше. На частотах до 1кГц трансформаторы выполняют одно- и трехфазными, а выше преимущественно однофазными.
Магнитопроводы трансформаторов имеют различную геометрическую форму и выполняются из различных материалов. Из тонких листов специальной трансформаторной стали, Ш-образной формы, часто выполняют силовые трансформаторы для источников вторичного электропитания. Магнитопроводы согласующих и выходных (для подключения громкоговорителей) трансформаторов, работающих в диапазоне частот до 35 кГц, для уменьшения потерь на нагрев магнитопровода в высокочастотных полях выполняют тороидальной формы из пермаллоевой ленты или полуколец спеченного феррита.
В ряде устройств, прямо на печатную плату, монтируют специальные (залитые компаундом на основе полимерных смол) так называемые «залитые трансформаторы», а также «сверхплоские трансформаторы».
При выборе трансформаторов необходимо учитывать допустимые токи и напряжения, полную мощность (В·А), потребляемую из сети, и активную мощность (Вт), которую он может передать в нагрузку. Следует также обращать внимание на диапазон рабочих частот, маркировку обмоток и выводов (особенно у многообмоточных трансформаторов).
При эксплуатации трансформаторов приходится учитывать ряд их особенностей. Напряжение на вторичной обмотке трансформатора снижается с увеличением мощности, потребляемой от него в нагрузке.
Трансформаторы создают помехи, поэтому надо принимать необходимые меры по экранировке и правильному их размещению относительно других устройств. При монтаже трансформаторов надо следить, чтобы никакие стяжки и крепления не превратились в короткозамкнутые витки. Поскольку трансформаторы нагреваются при работе, то наряду с другими компонентами для них может потребоваться также обдув воздухом от вентилятора.
1.2. Основные электронные компоненты
Электровакуумные приборы
Наиболее существенные успехи при зарождении радиоэлектроники в 1920–1930 годы прошлого века связаны с ламповой техникой. Сами же радиолампы (точнее, электронные лампы) ведут свою историю от еще более ранних открытий Эдисона, Томсона и Флеминга, приведших к созданию электровакуумного диода с катодом в виде нити накаливания и изобретения американским инженером и ученым Ли де Форестом трехэлектродной лампы (триода) в 1907 г. Именно введение управляющего электрода в виде сетки, размещаемой между катодом и анодом, позволило создавать радиоэлектронные устройства с самыми разнообразными характеристиками и назначением.
В зависимости от функционального назначения различают электронно-управляемые лампы: выпрямительные, усилительные, генераторные и модуляторные; по диапазону частот — низкочастотные, высокочастотные и сверхвысокочастотные; по мощности — маломощные, мощные и сверхмощные.
Независимо от назначения любая радиолампа состоит из баллона (колбы), системы электродов и системы вводов. Баллон может быть стеклянным, керамическим и металлокерамическим (рис. 9).
Рис. 9. Радиолампы:
а — внешний вид; б — УГО триода и компонент EWB
В процессе производства из баллона откачивают воздух до разрежения примерно 10-6 мм рт. ст.
Основными электродами двухэлектродной лампы (диода) являются катод и анод.
Катод служит источником электронов, получаемых за счет термоэлектронной эмиссии. Различают катоды прямого и косвенного накала; в последних специальные вещества, легко эмитирующие электроны, наносят на наружную по отношению к нити накала поверхность.
Анод является приемником электронов, попадающих на него при подаче положительного потенциала относительно катода. На аноде при ударах электронов рассеивается определенная мощность, приводя к его нагреву. Поэтому в лампах малой и средней мощности анод изготавливают их никеля, тантала, стали или молибдена, а в мощных и сверхмощных устройствах дополняют системой принудительного охлаждения (воздушного или водяного). Геометрическая форма анода может быть самой разнообразной: от простейшего цилиндра до сложной «оребренной» поверхности.
Выпрямительные диоды называют кенотронами. В одном баллоне могут размещаться два анода, что удобно при использовании схем двухполупериодного выпрямления. Основными характеристиками кенотронов являются обратное напряжение и рабочий ток. Для детектирования токов высокой частоты используют специальные детекторные диоды.
В триодах между катодом и анодом размещают управляющий электрод, обычно имеющий форму сетки (рис. 9, б). Сетка размещается ближе к катоду, благодаря чему малые потенциалы на ней относительно катода (сравнительно с большим потенциалом анода, но помещенным дальше), дают возможность управления анодным током. В частности, это дает эффект усиления сигналов. Триод, как и диод, также может быть сдвоенным.