Посвящение в радиоэлектронику
Посвящение в радиоэлектронику читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Пожалуй, проще всех по конструкции уголковые отражатели. Они выполняются из трех взаимно перпендикулярных плоских металлических листов. При этом с какой бы стороны ни проходил радиолокационный сигнал, он отражается строго в обратном направлении. Это можно доказать, воспользовавшись законом геометрической оптики: угол падения равен углу отражения. Закон геометрической оптики применим, если размеры отражателя существенно больше длины волны. Например, уголковый отражатель со стороной 30 см будет прекрасно виден на экране РЛС, работающей в трехсантиметровом диапазоне волн. Эффективная площадь рассеяния такого «уголка» достигает нескольких квадратных метров, т. е. как и у небольшого самолета. Уголковые отражатели применяют и на суше, например для обозначения границ взлетного поля аэродрома. На экране самолетной РЛС отражатели видны яркими точками.
Уголковый отражатель и принцип его действия.
Теперь вас ожидает рассказ со сказочным сюжетом. Представьте самолет-разведчик, летящий вдоль границы. Он не залетает на территорию чужой страны и «просматривает» ее лучом радара. На выходе РЛС или даже потом, на земле, после обработки данных, получается подробнейшая карта чужой территории, да какая карта! На расстоянии нескольких сотен километров можно разглядеть каждую улицу, каждый дом, отдельные автомашины. «Ну, уж извините, — скажет читатель, — такое невозможно даже при наблюдении в самый лучший оптический телескоп». Вы правы, с помощью оптического телескопа такое разрешение получить почти невозможно, а с помощью радара — да. То, что я рассказал, не сказка, это было сделано еще десять — пятнадцать лет назад.
Вот самое последнее достижение. К Венере в 1984 году были посланы две советские межпланетные станции — Венера-15 и Венера-16. Четыре месяца они были в полете, пока не вышли на околовенерианскую орбиту высотой 1000…2000 км. С этой огромной высоты заработали радиолокаторы. Было проведено много сеансов локации поверхности. Сквозь плотный слой облаков осуществлялось ее детальное картографическое исследование. Разрешающая способность локаторов достигала 1 км, а точность определения высоты — 30 м. Данные передавались на Землю по космической радиолинии и обрабатывались уже здесь, на Земле.
Руководитель коллектива, создавшего уникальную аппаратуру, академик А. Ф. Богомолов рассказывает, что при использовании традиционной радиолокационной техники понадобились бы антенны диаметром 60…70 м. Доставить такие антенны к Венере было нереально. Поэтому и использовали новый тип радара — радиолокатор бокового обзора с синтезированной апертурой. Что же это за локатор, превосходящий по разрешающей способности лучшие оптические приборы?
РЛС бокового обзора.
Вернемся к примеру с самолетом, летящим вдоль границы. Этот радар «смотрит» вбок, перпендикулярно направлению полета. Отсюда и название — «PЛC бокового обзора». Для разрешения объектов размером в несколько метров на расстоянии, скажем, 100 км ширина луча должна составлять 10-5 рад, или около двух угловых секунд. На волне длиной З см апертуру обычной антенны вдоль направления полета надо было бы сделать равной 3 км, что, разумеется, нереально: антенна-то самолетная. А что, если воспользоваться тем обстоятельством, что самолет с его реальной маленькой антенной последовательно проходит все это расстояние. Ведь тем самым как бы получаем антенну с воображаемой, синтезированной апертурой.
В начале нужного нам трехкилометрового отрезка трассы полета самолета РЛС излучает импульсы, а отраженные сигналы запоминаются в ЭВМ или записываются на пленке с учетом их амплитуд и фаз. То же самое делается и на всем пути синтезирования. А затем все записанные сигналы складываются так, как это сделала бы реальная антенна с длиной 3 км.
Обработка сигналов при синтезировании очень сложна. Прежде всего импульсы должны быть когерентными, т. е. с неизменной частотой и фазой. Отражающих целей много, и объем обрабатываемой информации громаден. В первых опытах использовали фотопленку и оптическую систему обработки в когерентном лазерном свете. Ведь записанная информация об амплитуде и фазе отраженных сигналов является не чем иным, как голограммой [3], только снятой не в оптическом, а в радиодиапазоне. Голограмма несет всю информацию об объектах, сумей только ее обработать! Теперь эта задача по плечу большим цифровым ЭВМ, и изображение местности, снятой радаром бокового обзора с синтезированной апертурой, можно получать прямо на ходу, в полете.
Чудес в радиолокации еще очень много. Эта область науки интересна и для математиков, и для физиков, и для радиоинженеров — всем найдется сфера приложения сил.
10. ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНФОРМАТИКА
Глава, в которой автор не будет вспоминать никаких сказочных чудес по той простой причине, что действительность далеко превосходит их. Расскажет о том, что казалось невероятным еще вчера, стало обыденным сегодня, и о том, что нас ждет завтра. И наконец, о том, что даже представить себе пока трудно. Одним словом-об электронных вычислительных машинах, информационных комплексах и о патентном поиске не выходя из дома.
Все достижения цивилизации созданы трудом, и, чтобы приумножить их или хотя бы сохранить на прежнем уровне, надо очень много работать. Настолько много, что традиционными методами и инструментами с таким объемом работы справиться нельзя.
Возьмем, например, счетную вычислительную работу. Робинзону Крузо пришлось делать зарубки на деревяшке, считая дни до прибытия спасительного судна, а число их составляло 365 в году, всего он провел на необитаемом острове 28 лет, да еще надо учесть високосные годы… Так и хочется попросить для расчетов бумагу и карандаш, потому что сделать это в уме уже непросто. Однако сейчас некоторые школьники попросят микрокалькулятор — времена меняются! Еще в прошлом веке делать зарубки на палке перестали — хлопотно и неудобно. Изобрели конторские счеты — прибор на редкость простой и долгоживущий. В принципиальном отношении они недалеко ушли от четок средневекового монаха. Правда, у счетов есть и одно неоспоримо прогрессивное нововведение — система счета по разрядам, соответствующим разрядам десятичных чисел.
В 1641 году Б. Паскалем была изобретена механическая машинка для арифметических вычислений. Однако первую действующую модель, выполняющую четыре арифметических действия, построил немецкий часовой мастер Ган только в 1790 году. Лишь через сто лет, в 1890 году, петербургский механик В. Однер наладил производство отечественных арифмометров. Они «умели» складывать и вычитать многозначные числа. Я не знаю, как устроен механический арифмометр, но людям свойственно уважать сложное и непонятное. Так и я преклоняюсь перед смекалкой и талантом механиков, сумевших создать это хитроумное переплетение зубчатых колесиков, кнопок и рычагов. Позже появились электрические арифмометры (не путайте с электронными!). Там все было то же самое, но ручной привод был заменен электрическим. Набрал нужные числа, нажал кнопку — «хр…р…р…юк» — выскочил в окошечке результат. Эти старинные арифмометры напоминали старые кассовые аппараты, на которых еще недавно работали кассиры магазинов. Даже автоматизировав выполнение четырех арифметических действий, мы не выйдем за пределы школьной науки арифметики.
А как быть с алгеброй, дифференциальными уравнениями, вариационным исчислением, теорией функций комплексного переменного и многими-многими другими математическими дисциплинами? Не подумайте, что математики придумали эти науки для собственного развлечения. Они очень нужны всем в практической деятельности.