Термодинамика реальных процессов
Термодинамика реальных процессов читать книгу онлайн
В монографии приводятся ряд новых законов термодинамики, нетрадиционное определение времени и пространства и способы управления последними, описаны устройства, нарушающие второй закон термодинамики Клаузиуса, третий закон механики Ньютона и закон сохранения количества движения. Установлен факт существования сверхтонких миров и объектов, которые живут вне времени и пространства и взаимодействуют с нами по законам добра и зла. В новом свете предстают суть человека, свобода воли, цель жизни, мышление, память, сновидения, нарушения психики и интересующая всех проблема здоровья. Дается объяснение физического механизма так называемых аномальных явлений (парапсихология, полтергейст, НЛО и т.п.), показано, что все они суть некий единый феномен, порождаемый сверхтонким миром зла, который проникает в нас и манипулирует нашими сознанием и здоровьем.
Предназначена для научных и инженерно-технических работников, преподавателей, аспирантов, студентов и широкого круга читателей, интересующихся этими вопросами.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
К?? = - ??/? (278)
С помощью критерия неравновесности равновесное состояние системы можно охарактеризовать следующим образом:
К?? = - ??/Р << 1 (279)
Критерий неравновесности много меньше единицы (практически равен нулю).
Необходимо отметить, что покой вещества на уровне интенсиала Р ? 0 в принципе отличается от абсолютного покоя, когда Р = 0 . Первого типа покой тоже представляет большой теоретический и практический интерес, поскольку при определении свойств системы достаточно использовать только третье и четвертое начала - состояния и взаимности. При этом никаких дополнительных уравнений выводить не приходится, расчетными формулами служат сами уравнения состояния и взаимности.
В статодинамике изучаются нестационарные равновесные системы. Признаком нестационарности является изменение интенсиала со временем. Причина нестационарности заключена в характере переноса вещества: если количество вещества, вошедшего в систему, не равно количеству вещества, вышедшего из нее, то разница идет на изменение состояния системы. Обозначив поток вещества, пронизывающего систему, через I , получим следующий критерий нестационарности:
К?I = ?I/(I + ?I) (280)
где ?I - разность потоков, равная количеству вещества, аккумулируемого системой:
?I = I’’ – I’ ;
I’’ и I’ - входящий в систему и выходящий из нее потоки; под I понимается наименьший из потоков: I’ или I’’ .
На стационарном режиме весь поток пронизывает систему (?I = 0) , критерий нестационарности
К?I << 1 . (281)
В нестационарных условиях
0 < К?I << 1 . (282)
В крайнем случае предельно развитого нестационарного режима I = 0 , критерий нестационарности
К?I = 1 (283)
Весь поток аккумулируется системой. Именно такой предельный случай рассматривается в статодинамике.
Равновесность статодинамической системы обеспечивается благодаря соблюдению требования (279). Оба требования - равновесности (279) и нестационарности (283) - выполняются тогда, когда скорость перераспределения вещества в объеме системы заметно превышает скорость поступления вещества в систему. Такие условия имеют место, если сопротивление системы много меньше сопротивления на ее поверхности. На практике это требование хорошо удовлетворяется, например, для термической и механической степеней свободы теплового двигателя [21, с.162]. В теории теплопроводности такие условия соответствуют величине известного критерия Био, стремящейся к нулю.
Как видим, статодинамическая система обладает весьма интересными свойствами: количество вещества в ней изменяется со временем, но интенсиалы распределены по объему практически равномерно. Изменения экстенсора и интенсиала делают систему квазиравновесной. Отсутствие заметных разностей интенсиалов по сечению приводит к тому, что внутри системы экранированное вермическое вещество практически не выделяется, теплота диссипации появляется только на поверхности, где имеется заметное сопротивление. Именно такой случай является предметом изучения в классической термодинамике.
В статодинамике используется весь математический аппарат основных законов, причем для оценки процессов обмена должны быть выведены особые дифференциальные уравнения переноса, учитывающие специфику нестационарной равновесной системы. Вывод этих уравнений крайне облегчается из-за равномерного распределения интенсиалов в сечении системы, ибо ее состояние в любой момент целиком характеризуется только одним значением интенсиала. Соответствующие формулы, определяющие изменения со временем количества переданного вещества, энергии, интенсиала, потока вещества, количества тепла диссипации на поверхности и т.д., приводятся, например, в работах [17, с.88, 102; 21, с.193].
В кинетике изучаются стационарные неравновесные системы. Условие стационарности определяется формулами (276) и (277), условие неравновесности - выражением
К?? = - ??/? ? 1 (284)
Особенность кинетической системы заключается в том, что она как бы пронизывается веществом, ибо количество вошедшего вещества равно количеству вышедшего. Это соответствует условию (281). Проходящее сквозь систему вещество создает все эффекты переноса, включая диссипацию. Другая часть вещества находится в покое, она обеспечивает соблюдение условий (276) и (277) и создает нужные для переноса разности ?? .
При решении кинетических задач используется весь математический аппарат ОТ. Если поле интенсиалов является одномерным, тогда интегрируются непосредственно уравнения основных законов и найденные интегралы согласуются с соответствующими условиями однозначности. При неодномерном поле интенсиалов приходится выводить специальные дифференциальные уравнения переноса, они могут быть получены также в качестве частных случаев из уравнений динамики.
Нестационарные неравновесные системы, изучаемые в динамике, описываются следующими значениями критерия нестационарности (280):
0 ? К?I ? 1 . (285)
Это значит, что из динамической системы в частном случае могут быть получены все остальные: статическая (при I = 0 и ?I = 0), статодинамическая (при К?I = 1) и кинетическая (при К?I << 1 ).
Например, для решения динамических задач в параграфе 13 гл. XI были выведены особые дифференциальные уравнения второго порядка в частных производных. Решение этих уравнений совместно с условиями однозначности позволяет найти свойства любой системы.
В общем случае динамические системы отличаются наибольшей сложностью. Поэтому если есть возможность отнести изучаемую систему к какому-либо из частных случаев, то это следует сделать, чтобы существенно упростить математический аппарат исследования. При отнесении данной системы к тому или иному классу надо помнить, что критерии нестационарности и неравновесности не обязательно должны быть строго равны нулю или единице. Вполне достаточно, если они приближаются к этим значениям с той степенью точности, которая требуется от выполняемого инженерного расчета [ТРП, стр.290-295].
2. Обратимый и необратимый процессы.
Рассмотренный круг вопросов позволяет разобраться еще в одной чрезвычайно трудной и запутанной проблеме современной теории: речь идет о так называемых обратимом и необратимом (квазистатическом и нестатическом или квазиравновесном и неравновесном) процессах.
Еще со времен Клаузиуса все реальные процессы принято считать сугубо необратимыми в том смысле, что они протекают только в одном направлении - с выделением теплоты трения (диссипации). В результате «все формы энергии превращаются в теплоту и в ней находят свою смерть» (Клаузиус). Однако, согласно ОТ, природа не знает такой фатальной односторонности реальных процессов. В действительности процессы обратного направления (минус-трения, с поглощением теплоты диссипации) встречаются столь же часто, как и процессы прямого (плюс-трения, с выделением теплоты). В связи со сказанным термин «необратимый» процесс надо признать неудачным, затемняющим суть дела и от него следует отказаться. Более точно отражают действительность такие термины, как «нестатический», «неравновесный», «реальный» процесс.
Главным признаком любого реального процесса является наличие положительной или отрицательной разности интенсиалов и, следовательно, выделение или поглощение теплоты трения. На этом основании легко вывести специальный критерий, характеризующий степень нестатичности, или неравновесности, реального процесса. Например, соответствующий критерий получается как отношение количества тепла диссипации (экранирования) QЭ , которая выделяется или поглощается в системе при переносе через (или внутри) нее количества вещества ?? , к работе того же вещества Q' , совершаемой на поверхности системы. Имеем (см. формулы (42) и (222))
КЭ = QЭ/ Q' = (??Э?Е)/(?'?Е) = ??Э/?' (286)
где ??Э – перепад интенсиала в системе:
?Р = Р’’ – Р’ ;
Р' - значение интенсиала на входе в систему; Р" - то же на выходе.