Посвящение в радиоэлектронику
Посвящение в радиоэлектронику читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Промышленность США и Канады очень быстро наладила выпуск радиолокационных станций. Часть их по ленд-лизу поставлялась в СССР. Необходимость освоения все более коротких волн стимулировала и теоретические разработки. Это были годы рождения электродинамики сверхвысоких частот и волноводной техники.
Отгремела война, и перед радиолокационной техникой открылись новые сферы применения во многих отраслях народного хозяйства. Без радаров теперь немыслимы авиация и судовождение. Радиолокационные станции исследуют планеты Солнечной системы и поверхность нашей Земли, определяют параметры орбит спутников и обнаруживают скопления грозовых облаков. Техника радиолокации за последние годы неузнаваемо изменилась.
Рассмотрим структурные схемы простейших радиолокаторов. Доплеровская PЛC непрерывного излучения самая простая из всех. Именно такими и были первые «радиоуловители» самолетов. Она содержит генератор высокочастотных колебаний (ГВЧ), передающую Апер и приемную Апр антенны, смеситель и усилитель низкой частоты биений (УНЧ). На его выходе включаются либо наушники, либо частотомер. Доплеровская РЛС не обнаруживает неподвижные предметы. Сигнал, отраженный от них, имеет ту же самую частоту, что и излучаемый. Но если обнаруживаемый объект движется в направлении локатора или от него, частота отраженного сигнала изменяется вследствие эффекта Доплера.
Структурная схема доплеровской РЛС непрерывного излучения.
С этим эффектом вы наверняка неоднократно встречались. Если на лодке в ветреную погоду двигаться навстречу волне, то удары волн о лодку становятся чаще. Если же вы меняете курс и уходите под ветер, то лодка как бы убегает от волны и удары волн становятся реже. В этих опытах в зависимости от направления движения и скорости лодки изменяется частота воспринимаемых нами колебаний водной поверхности — волн. Тот же эффект наблюдается и со звуковыми волнами. Тон гудка мчащегося на вас поезда кажется более высоким, а удаляющегося — более низким. При радиолокации эффект Доплера проявляется вдвое сильнее. Самолет, летящий навстречу излучаемой локатором волне, встречает более частые колебания электромагнитного поля. Переизлучая их во время движения, он еще повышает их частоту. При удалении же самолета от локатора частота отраженного сигнала понижается. В приемную антенну попадают два сигнала: прямою прохождения, просочившийся между антеннами, и отраженный от цели. В смесителе они взаимодействуют, образуя разностную частоту биений, в точности равную доплеровской fл = fo·(2v/c), fo — частота излучаемого сигнала; с — радиальная скорость цели; v — скорость радиоволн, равная скорости света.
Оценим, например, какова доплеровская частота для автомашины, скорость которой определяется инспектором ГАИ с помощью только что описанного устройства. Частота fo в этих локаторах лежит в диапазоне 10 ГГц, что соответствует длине волны 3 см, а скорость автомашины положим равной 30 м/с. Попутно заметим, что здесь имеет место явное нарушение правил движения, поскольку максимальная скорость на автодорогах установлена равной 90 км/ч, а 30 м/с соответствует 108 км/ч:
В этом случае на выходе локатора получается хорошо слышимый тон звуковой частоты. С помощью частотомера, установленного на выходе усилителя биений, можно достаточно точно определять радиальную скорость цели. Доплеровский метод измерения скорости используют и в самых современных радарах. Частотомер в этом случае вырабатывает цифровой код, который с помощью формирователя буквенно-цифровой информации выводится на основной экран РЛС. Рядом с отметкой цели оператор РЛС видит и цифру, соответствующую се скорости, выраженной в узлах, километрах в час или метрах в секунду.
Определить дальность доплеровским локатором нельзя, но если частоту излучаемых колебаний изменять в некоторых пределах, т. е. ввести в генератор частотную модуляцию, то появляется возможность измерить дальность. Именно так и случилось в первом опыте Б. К. Шембеля при локации Крымских гор. Пусть частота передатчика изменяется по пилообразному закону. Частота отраженного сигнала также будет изменяться, но с запаздыванием на время τ распространения волн до цели и обратно. Если частота передатчика в какой-то момент t1, равна f1, то отраженный сигнал возвращается с этой же частотой. Но частота передатчика к времени t1 + τ успеет измениться до значения f1 + Δf, и в приемнике выделится сигнал биений с частотой Δf. Она тем выше, чем больше расстояние до цели.
Закон изменения частоты сигналов в ЧМ локаторе.
Частотно-модулированные локаторы создавались неоднократно для работы с одиночными целями. Например, на самолетах Гражданской авиации многие годы применялся радиовысотомер РВ-2, построенный именно на этом принципе. Частотно-модулированные локаторы разрабатывались и для выполнения операции стыковки космических кораблей на орбите, причем они обеспечивали очень хорошую точность определения дистанции.
Наибольшее распространение получил импульсный способ определения дальности. На рисунке показана структурная схема импульсного локатора.
Структурная схема импульсной РЛС.
Его работой управляет генератор импульсов (ГИ), следующих с относительно невысокой частотой повторения порядка сотен импульсов в секунду. Мощные импульсы подаются на генератор высокой частоты (ГВЧ), вырабатывающий очень мощные короткие импульсы высокочастотных (ВЧ) колебаний. Например, если мощность ВЧ колебаний составляет 100 кВт, а длительность импульса 1 мкс, при частоте повторения 100 Гц средняя мощность ГВЧ составит всего 10 Вт, т. е. меньше, чем мощность обычной настольной лампы. Поэтому даже мощный импульсный генератор оказывается достаточно компактным и не перегревается при длительной работе. Через антенный переключатель (AП) ВЧ импульс поступает в антенну и излучается. После излучения импульса антенна подключается ко входу приемника (Пр). Разумеется, механический переключатель антенны непригоден: он не может обладать необходимым быстродействием. В первых одноантенных импульсных РЛС использовались газовые разрядники, по конструкции напоминавшие неоновую лампу, только они были рассчитаны на более высокую мощность. Установленный на входе приемника разрядник вспыхивал под действием мощного излучаемого импульса и замыкал вход приемника, «спасая» его от излишней ВЧ энергии. После излучения импульса разрядник погасал и не мешал отраженным сигналам поступать в приемник. В современных РЛС кроме газовых разрядников используют и полупроводниковые переключатели, выполненные на диодах.
Одновременно с излучением импульса запускается генератор развертки (ГР), вырабатывающий линейно нарастающее пилообразное напряжение. Оно поступает на пластины горизонтального отклонения электронно-лучевой трубки, экран которой и является широко известным по фильмам и книгам экраном РЛС. В результате луч перемещается слева направо, формируя линию развертки. Усиленный и продетектированный сигнал с выхода приемника подается на пластины вертикального отклонения. Что же мы видим на экране? Прежде всего в самом начале линии развертки появится мощный импульс, все-таки «просочившийся» в приемник через разрядники антенного переключателя. Он будет служить началом шкалы дальности. Спустя некоторое время, нужное для распространения волн, придут сигналы от целей. Луч к этому времени переместится правее. Чем дальше цель, тем дальше от начала развертки окажутся отраженные импульсы. А их амплитуда будет соответствовать интенсивности отраженного сигнала. По ней в какой-то мере можно судить о величине цели.