Беседы о физике и технике
Беседы о физике и технике читать книгу онлайн
В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
ПРИ ЭТИХ ТЕМПЕРАТУРАХ И ВОЗНИКАЕТ СВЕРХТЕКУЧЕСТЬ ГЕЛИЯ? ОБЪЯСНИТЕ ПОДРОБНЕЕ, ЧТО ЭТО ТАКОЕ.
Одним из замечательных свойств гелия II является его чрезвычайно высокая теплопроводность — намного выше меди и серебра — наиболее теплопроводных металлов. Это обстоятельство достоверно объясняет отсутствие пузырьков пара в гелии II при температурах ниже 2,17 К. Посмотрите на кипящую воду, и вы увидите движение пузырьков пара со дна сосуда. В кипящем сверхохлажденном гелии таких пузырьков нет.
Если теплопроводность жидкости очень высока, в ней невозможно создать разность температур на дне и у поверхности и испарение такой жидкости идет только с ее поверхности. Так и происходит в гелии II.
Исследуя причину такой высокой теплопроводности гелия II, П. Л. Капица установил, что причиной переноса тепловой энергии в нем является конвекция. Если это так, то тепловые потоки в гелии II должны распространяться с чрезвычайной легкостью. А это означает, что вязкость гелия II должна быть ничтожной (она оказалась меньшей, чем вязкость воды при комнатной температуре, в 1013 раз). Так, в 1937 г. академиком П.Л.Капицей было сделано фундаментальное открытие в области низких температур — явление, названное им сверхтекучестью.
А СВЕРХПРОВОДИМОСТЬ СВЯЗАНА СО СВЕРХТЕКУЧЕСТЬЮ?
В 1912 г. Камерлинг-Оннесом было открыто явление сверхпроводимости металлов при температурах ниже Гкр гелия. Сверхпроводимость металлов была объяснена лишь в 1957 г.
После построения акад. Л.Д.Ландау (1908–1968) теории сверхтекучести (внешне явления сверхтекучести и сверхпроводимости очень похожи: и в том, и в другом случаях речь идет о потоке, на который трение не действует) сверхпроводимость можно было представить как сверхтекучесть электронного газа.
Усилиями многих отечественных и зарубежных ученых, в том числе акад. Н. Н. Боголюбова, предложившего новый метод в теории, природа сверхпроводимости полностью разъяснилась.
В 1962 г. Л.Д.Ландау за «пионерские теоретические работы по конденсированному состоянию, особенно жидкого гелия» была присуждена Нобелевская премия.
НАВЕРНОЕ, ДОСТИЖЕНИЕ СВЕРХНИЗКИХ ТЕМПЕРАТУР — ЭТО САМОСТОЯТЕЛЬНАЯ НАУЧНАЯ ПРОБЛЕМА?
Итак, нам осталось выяснить, как в настоящее время осуществляется сжижение газа, в чем транспортируется такая жидкость и какое практическое техническое применение получила физика низких температур.
Как мы уже упоминали ранее, получить жидкий гелий можно в специальных машинах, работающих на эффекте Джоуля — Томсона с предварительным охлаждением гелия жидким водородом. Этот способ хотя внешне и прост, но не совсем удобен.
Если построить машину для получения жидкого воздуха (который в огромных количествах производит и потребляет промышленность), то нужно иметь фактически две машины: для водорода и для гелия, каждую со всем своим хозяйством — мощным компрессором, газовыми коммуникациями, хранилищем газов, средствами очистки газов от примесей. Кроме того, употребляемый в установке водород крайне опасен: при утечке из системы он, смешавшись с воздухом, образует гремучую смесь. Современные машины для сжижения газов работают без водорода. Для этого в компрессоре 1 (рис. 15) гелий предварительно сжимается, затем остывает (ведь при сжатии он нагревается) и направляется в цилиндр 3, где он, как пар в паровой машине, перемещает поршень. Это устройство в холодильной технике носит название детандера. Газ, расширяясь в детандере, охлаждается. Расчеты показывают: чтобы получить температуру 10 К, газ нужно предварительно сжать компрессором до 500 МПа (5 тыс. атм).
Рис. 15. Схема замкнутого цикла для охлаждения газа расширением в детандере:
1 — компрессор; 2 — охлаждение прямого потока до комнатной температуры; 3 — теплообменник; 4 — детандер
Даже если мы хотим получить температуру, достаточную для сжижения воздуха (Ткр = 132 К), то и тогда необходимо создать компрессором давление в сотни атмосфер, что для гелия не так просто. Для того чтобы уменьшить рабочее давление, в систему между компрессором и детандером вводят теплообменник 2 (схема машины приведена на рис. 15). Газ, поступая в детандер, охлаждается обратным потоком гелия, уже успевшего расшириться и охладиться. Поэтому процесс расширения начинается при более низкой температуре, а значит, и исходное давление может быть значительно меньшим.
Необходимо заметить, что в лабораториях и на заводах имеются машины, вырабатывающие сотни литров жидкости в час, но есть и очень маленькие, которые размещаются и работают на борту искусственных спутников и космических кораблей.
Стоимость литра сжиженного гелия исчисляется десятками копеек, что делает его доступным для любых физических лабораторий и промышленных предприятий.
Тот же эффект охлаждения за счет совершаемой газом внешней работы при адиабатном расширении был использован П. Л. Капицей в машине нового типа, предложенной им в 1935 г. для сжижения воздуха с целью промышленного получения кислорода. В этой машине газ совершал внешнюю работу, приводя во вращение высокоэффективную турбину (турбодетандер). В ней воздух предварительно сжимался в турбокомпрессоре всего до 0,4–0,5 МПа (4–5 атм), в то время как в поршневых машинах давление создавалось от 7 до 19 МПа.
Таким образом, в технике получения низких температур стал использоваться только цикл низкого давления, а это позволило стране сэкономить сотни миллионов рублей. Разработанный П. Л. Капицей турбодетандер с КПД 80–85 % предопределил развитие во всем мире современных крупных промышленных установок разделения воздуха для получения жидкого кислорода.
ИТАК, ЖИДКИЙ ГАЗ ПОЛУЧЕН И ВОЗНИКАЮТ ПРОБЛЕМЫ ЕГО ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ?
Задача хранения и транспортировки жидкого гелия также не является простой — ведь разность температур между комнатной и жидкостью составляет почти 300 К!
Оказалось, что ни сосуд Дьюара, ни какой-либо другой с пористой изоляцией непригодны, так как они не в состоянии создать необходимой преграды для теплообмена между гелием и окружающей средой.
Наиболее употребительными оказались металлические сосуды — криостаты. Как они устроены, видно из рис. 16.
Рис. 16. Схема устройства сосуда для хранения и транспортировки жидкого гелия:
1 — трубка для выхода испаряющегося гелия; 2 — отверстие для переливания жидкого гелия, закрытое пробкой; 3 — трубка для заливки жидкого азота; 4 — тонкостенные трубки из нержавеющей стали; 5 — штуцер вакуумной откачки; 6 — медные полированные сферы, каждая из которых спаяна из двух полусфер; 7 — адсорбент; 8 — трубки, соединяющие между собой вакуумные полости и одновременно служащие распорками
Криостат очень похож на сосуд Дьюара, но между ними есть и различия. Полость между сосудом с гелием и внешней стенкой заполнена жидким азотом. Жидкий азот нужен для того, чтобы уменьшить испарение гелия, — именно азот, так как он не взрывоопасен и получение его из воздуха чрезвычайно дешево.
Емкости для гелия и азота выполнены из полированной меди, высокая теплопроводность которой компенсируется подвеской системы на тонкостенных трубках из нержавеющей стали — материала, плохо проводящего теплоту.
Чтобы вакуум в «рубашке» сохранялся длительное время, в вакуумных промежутках помещен адсорбент — поглотитель газов (обычно активированный уголь). Из такого криостата может испариться не более 100 см3 гелия в сутки.