Радиоэлектроника-с компьютером и паяльником

На нашем литературном портале можно бесплатно читать книгу Радиоэлектроника-с компьютером и паяльником, Кардашев Генрих Арутюнович-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Радиоэлектроника-с компьютером и паяльником
Название: Радиоэлектроника-с компьютером и паяльником
Дата добавления: 16 январь 2020
Количество просмотров: 520
Читать онлайн

Радиоэлектроника-с компьютером и паяльником читать книгу онлайн

Радиоэлектроника-с компьютером и паяльником - читать бесплатно онлайн , автор Кардашев Генрих Арутюнович

Книга является практическим введением в изучение начал радиоэлектроники с помощью компьютера и самостоятельного технического творчества. В популярной форме рассказывается о радиоэлектронике, поясняется смысл используемых понятий и явлений, приводятся занимательные эпизоды из истории изобретений и открытий. Основу практической части составляют описания простейших и в тоже время интересных и полезных самоделок из электронных наборов Мастер КИТ. Даются подробные советы по их сборке, наладке и применению в быту. Параллельно принципы действия рассматриваемых устройств раскрываются путем моделирования их схем на компьютере в простой программе игрового типа — Electronics Workbench.

Для широкого круга читателей, которые хотели бы подружиться с радиоэлектроникой, сев за компьютер и взяв в руки паяльник.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 59 60 61 62 63 64 65 66 67 ... 70 ВПЕРЕД
Перейти на страницу:

Эти вопросы работы и согласования генератора со столь сложной нагрузкой, находящейся практически почти в «ближнем поле», как и проблемы физики нагрева, с которыми они взаимосвязаны, не имеют пока однозначного решения.

Другой важнейшей и в то же время деликатной проблемой СВЧ-нагрева в быту является вопрос экранировки от утечек поля в окружающее пространство. Вопрос этот весьма серьезный: достаточно лишь представить себе, что внутри печи локализована электромагнитная мощность, сравнимая с мощностью отдельных передатчиков, размещенных на Останкинской башне.

Существует несколько возможных каналов для утечек, но мы остановимся на наиболее опасном источнике: щели между дверцей печи и камерой. Согласно электродинамике Максвелла, излучение из щели в проводящем экране будет происходить в том случае, если эта щель прерывает поверхностные токи, наведенные в нем электромагнитными волнами.

В старых конструкциях пытались здесь организовать хороший непрерывный контакт, и поскольку после некоторой эксплуатации он в отдельных местах неминуемо нарушался, то на прилегающих поверхностях появлялись следы электрической эрозии. Значит эти области «искрили», но в отличие от искрящих контактов в реле или на коллекторах электрических машин, излучение от разрядов, а также от токов смещения в неплотном зазоре СВЧ-печи лежит не в низкочастотной области, где их влияние на людей мало, а там, где оно может быть и велико. Поэтому при дальнейшем конструировании печей пошли по пути уменьшения этих токов, создаваемых по обе стороны щели. Для этого по всему периметру металлической дверцы на расстоянии четверти длины волны (λ/4) от выходного сечения внутренней части камеры выполняют профилированный прямоугольный «карман», приходящийся на удлинненную торцевую поверхность камеры печи, к которой примыкает дверца; глубина кармана также составляет λ/4. В результате по всему периметру образуется своеобразная резонансная ловушка (λ/2) для электромагнитных волн, короткозамкнутая на своих концевых (поперечных) поверхностях, где поверхностные токи достигают максимума, тогда как в области щели они оказываются близкими к нулю.

Такое устройство называют в СВЧ-технике четвертьволновым дросселем, возможно, по аналогии с дроссельной заслонкой в автомобиле, а не дроссельной катушкой, хотя, если перейти от распределенных систем к цепям с сосредоточенными параметрами, то это типичный фильтр-пробка, настроенный на рабочую частоту печи. Внутренняя поверхность дверцы закрывается пластмассовой накладкой, так что о наличии дросселя можно судить лишь по толщине кромки дверцы. Поскольку рабочая частота составляет 2,45 ГГц, то, разделив на нее скорость света в воздухе, получим длину волны λ = 12,2 см и (λ/4) ~= 3 см. Со стороны печи металлическая поверхность изолируется слоем эмали.

Таким образом, зазор в дросселе составляет примерно 0,1 мм и так как он теоретически находится в минимуме электромагнитных колебаний, то не должен излучать энергию во внешнее пространство. Надо лишь аккуратно обращаться с дверцей, следить за плотностью ее закрытия по всему периметру, чистотой, отсутствием царапин и сколов краски.

Теория теорией, а практика — практикой. Доверяй ей (теории), но всегда проверяй ее (практикой). «Береженого, Бог бережет», поэтому надо все же контролировать уровень возможных утечек электромагнитного поля.

Рупором в небо

Для начала борьбы с воображаемым противником надо дать оценки его характера и способностей. То, что мы живем и существуем благодаря электромагнитным полям и их взаимодействиям с живой и не живой природой, давно стало аксиомой мироздания. Поэтому остановимся лишь на некоторых моментах, оттеняющих рассматриваемую проблему.

Начнем издалека. В 1964 году американские астрофизики А. Пензиас и Р. Вильсон, проводя работы по исследованию внеземных радиоисточников, направили рупорную антенну на объект, с относительно сильным (по радиоастрономическим меркам) радиоизлучением, называемый «Кассиопея А». Поскольку радиоастрономические сигналы в принципе очень малы, то исследователи работали на максимально возможном уровне их усиления, при этом, как всегда, основной проблемой явилась борьба с разного рода шумами, на фоне которых надо было выделить полезный сигнал. В тот раз ученые предприняли все мыслимые попытки избавиться от сильного фона, сопровождавшего сигнал: закрыли все клепаные соединения и даже тщательно очистили антенну (пардон!) от птичьего помета… Какой-то посторонний фон оставался сильным. Тогда ученые стали исследовать именно это фоновое излучение. Оказалось, что оно соответствует температуре 3 К, т. е. чуть-чуть превышающей абсолютный нуль. Это подтверждало гипотезу, выдвинутую еще в 1948 году американским ученым-физиком русского происхождения Г. Гамовым, о том, что Вселенная после «Большого Взрыва» расширяется, охлаждаясь уже 18 млрд. лет.

Космический фон в виде радиоизлучения, соответствующий температуре 3 К, лежит в коротковолновой области СВЧ-диапазона: это миллиметровые волны или КВЧ (Крайне Высокие Частоты). Возможно, что Жизнь на Земле зародилась не только благодаря видимой (оптической) части электромагнитного спектра — свету Солнца, но и этому естественному фону, названному «реликтовым излучением».

По иронии судьбы, в 1978 году, А. Пензиас и Р. Вильсон разделили половину Нобелевской премии по физике «за открытие космического микроволнового фонового излучения». Однако, они разделили ее не между собой, а с П. Л. Капицей, которого наградили за его ранние «фундаментальные изобретения и открытия в области низких температур», а отнюдь не в области электроники СВЧ, которой он занимался в последние десятилетия, предшествовавшие вручению премии.

Космическое радиоизлучение, принимаемое на поверхности Земли, вообще говоря, заполняет весь диапазон радиоволн от 1 мм (в горах до 0,5 мм) до десятков метров.

Более длинноволновая часть его отражается от ионосферы. Напротив, более коротковолновая часть поглощается в атмосфере, за исключением оптического окна, как бы специально предназначенного природой для реакций фотосинтеза, происходящих в клетках растений: максимум излучения Солнца приходится именно на длину волны 0,5 мкм (зеленый цвет), соответствующую максимуму в спектре поглощения молекулами хлорофилла.

Здесь уместно отметить, что все остальные жизненные процессы сопровождаются расходованием химической энергии и ее рассеянием в виде тепла. Жизнь на Земле остановилась бы, если бы прекратился фотосинтез. Другая особенность фотосинтеза — это образование кислорода, а его роль в нашей жизни вряд ли кто оспорит. Вот так природа согласовала излучение и прием электромагнитных волн, а человек этому еще только начал учиться.

Максимальная интенсивность солнечного излучения, падающего отвесно на 1 м2 земной поверхности, на широте экватора в полдень составляет примерно 1 кВт. О том, что приносит нам Вселенная в радиодиапазоне, можно судить по используемым в радиоастрономии единицам измерений. Принятой здесь единицей является «1 Янский», равный 10-26 Вт/(м Гц), и чтобы собрать излучение такого уровня, строят антенны площадью в тысячи квадратных метров и применяют весьма специфические методы обработки радиосигналов. Правда, бывают и исключения.

Собственно, вообще наличие радиошумов внеземного происхождения было обнаружено еще в 1931 г. инженером американской компании Белл-телефон Карлом Янским (Karl Jansky) при изучении помех дальней радиосвязи. В 1932 году, так же, как позже по всему миру повторяли радиосигналы первого искусственного спутника, запущенного в СССР, открытые К. Янским «звуки Галактики» транслировались по всем Соединенным Штатам. Так было ознаменовано зарождение радиоастрономии. В честь К. Янского, впервые принявшего космическое радиоизлучение, и была названа единица его уровня. В отечественной научно-технической литературе встречается также фонетическое написание его фамилии: Джанский.

1 ... 59 60 61 62 63 64 65 66 67 ... 70 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название