Посвящение в радиоэлектронику
Посвящение в радиоэлектронику читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Далее следует УПЧИ усилитель промежуточной частоты изображения. Раньше он содержал три-четыре ламповых каскада усиления, а теперь несколько транзисторных каскадов. Между каскадами установлены колебательные контуры и фильтры, выделяющие только нужный спектр частот. Они определяют селективность приемника. Усиленный сигнал подается на детектор, а продетектированный видеосигнал через видеоусилитель — на управляющий электрод кинескопа. Там видеосигнал управляет током луча, а следовательно, и яркостью элементов изображения в соответствии с передаваемым сюжетом. А как же звук? Отдельного усилителя сигнала с частотой 31.5 МГц нет — он хорошо усиливается в УПЧИ и попадает на детектор вместе с видеонесущей. Между несущими звука и изображения возникают биения. Их частота равна разности частот несущих, т.с. 6, 5 МГц. Сигнал с этой частотой и выделяется после видеодетектора и дополнительно усиливается в УПЧЗ-усилителе промежуточной частоты звука. Сигнал ПЧЗ промодулирован по амплитуде видеосигналом и по частоте звуковым сопровождением. Амплитудную модуляцию можно снять ограничителем. Да к тому же и частотный детектор (ЧД) ее хорошо подавляет. В результате на выходе ЧД выделяется звуковой сигнал, подаваемый через усилитель звуковой частоты (У3Ч) на громкоговоритель. Описанный тракт приема получается проще, чем тракт с отдельными приемниками каналов звука и изображения.
Следующий блок, подключенный к выходу видеоусилителя, селектор синхроимпульсов (ССИ). Он отделяет синхроимпульсы от видеосигнала и подает их на генератор кадровой развертки (ГКР) и строчной развертки (ГСР). Генераторы вырабатывают ток пилообразной формы, питающий отклоняющие катушки, для получения растра на экране кинескопа. Этот процесс нам уже знаком. Последний элемент структурной схемы высоковольтный выпрямитель (ВВ), питающий кинескоп высоким напряжением, ускоряющим электроны. Выпрямитель присоединен к генератору строчной развертки, и вот почему.
Было бы очень сложно делать сетевой выпрямитель на напряжение в десятки киловольт. Но по счастью, у нас уже есть генератор строчной развертки, вырабатывающий ток с частотой 15625 Гц. Это довольно высокая частота, следовательно, период колебаний тока мал, всего 64 мкс. Но еще меньше время обратного хода луча, т. е. время, за которое пилообразный ток изменяется от максимального значения до минимального. Оно составляет, согласно телевизионным стандартам, не более 12 мкс. Строчные катушки обладают некоторой индуктивностью, да и подключены они к генератору развертки через трансформатор (так называемый строчник), также обладающий индуктивностью. А когда в индуктивной цепи резко изменяется ток (вспомните катушку Румкорфа), возникает большая ЭДС самоиндукции. Поэтому при работе генератора строчной развертки на его трансформаторе возникают импульсы напряжения амплитудой в несколько киловольт. Так это же то, что нужно! Остается выпрямить их и подать на анод кинескопа. Тем более, что потребляемый кинескопом ток очень невелик: не более нескольких миллиампер. Так устроено питание кинескопа во всех современных телевизорах. Если вышел из строя генератор кадровой развертки, на экране видна одна горизонтальная ярко светящаяся линия: все строки сливаются в одну. Если же отказал генератор строчной развертки, на экране ничего не видно: вместе со строчной разверткой прекратилось и питание кинескопа высоким напряжением. Вот мы и рассмотрели устройство телевизора.
«Но как же цвет?» спросите вы. Да, мы рассматривали черно-белый телевизор. Их сейчас выпускают все меньше и меньше, а черно-белые телепередачи уже почти не ведутся. Наступила эра цветного телевидения. О нем мы сейчас и побеседуем.
Структурная схема телевизионного приемника.
Проще всего это было сделать лет 25 назад. Тогда продавалась цветная пленка, накладываемая на экран черно-белого телевизора. Сверху она была голубой (небо), внизу зеленой (трава), а в середине… я уже забыл, какой она была в середине! Поскольку такой вариант цветопередачи не устраивал ни телезрителей, ни уважающих себя инженеров, пленка из продажи быстро исчезла, а специалисты разработали модели цветных телевизоров. Как же передают цвет? И сколько цветов надо передавать? Оказывается, основных цветов всего три: красный, зеленый и синий. В телевидении их обозначают начальными буквами соответствующих английских слов: R (red), G (green), В (blue). Любой другой цвет можно получить комбинацией этих трех. Желтый, например, получается при смешении красного и зеленого. Таким приемом широко пользуются художники, смешивая на палитре краски.
Смешение цветов.
Итак, на первый взгляд самая простая и очевидная система цветного телевидения должна предусматривать передачу одновременно тpex изображений: красного, зеленого и синего. Исходное цветное изображение через соответствующие светофильтры проецируются одновременно на три передающие трубки, а на приемной стороне изображение с экранов трех кинескопов: красного, зеленого и синего проецируется на общий экран. Нет таких кинескопов?
Ничего страшного — подходят обычные, белые, со светофильтрами, наложенными на экран. Беда в другом — нужны три канала передачи.
Неужели для передачи одной цветной программы нанимать три телевизионных канала? Слишком расточительно. Телевизор получается сложным и дорогим, как киноустановка, поскольку изображение надо проецировать на киноэкран, да и три кинескопа стоят недешево. Воспользуемся опять принципом кино и будем передавать красное, зеленое и голубое изображения поочередно, решили инженеры. Такая система цветного телевидения была разработана и даже испытывалась в 50-х годах. Перед телекамерой и перед экраном черно-белого кинескопа устанавливали вращающиеся диски с прозрачными цветными секторами — светофильтрами. Произошел как бы возврат к механическому телевидению, но уже на основе электронного! Диски вращались синхронно, и для стабилизации их вращения служила специальная система. А частоту кадровой и строчной разверток пришлось утроить, чтобы в течение 1/25 с (время передачи одного кадра в черно-белом телевидении) передать три изображения. Результаты получились неплохие, и несколько опытных цветных телевизоров работало в Москве. Но опять беда: подавляющее большинство телезрителей — владельцев черно-белых телевизоров смотреть эти передачи не могли. Смотреть-то, конечно, могли, и автор сам это делал, но на экране воспроизводилось сразу девять одинаковых картинок! Так получилось потому, что при цветной передаче частота развертки изображения была втрое выше. Поскольку картинки получались мелкими, смотреть их не доставляло никакого удовольствия. Говоря техническим языком, предложенная система цветного телевидения не обладала совместимостью с черно-белой системой.
Система с последовательной передачей цветов.
Были и другие недостатки: быстро вращающийся диск шумел, электризовался от трения о воздух и, притягивая мелкие пылинки, скоро становился пыльным до непрозрачности. Во всем мире начались поиски и разработки новых, совместимых систем цветного телевидения.
Таких систем сейчас используется три. NTSC (НТСЦ) в США, Канаде, Японии, Республике Куба и ряде стран Центральной и Южной Америки; PAL (ПАЛ) в ФРГ, Великобритании и ряде стран Западной Европы, Азии и Африки; SECAM (СЕКАМ) — в ряде стран Европы (в том числе СССР), Азии и Африки. Системы во многом схожи и различаются лишь деталями формирования так называемых сигналов цветности.