-->

Термодинамика реальных процессов

На нашем литературном портале можно бесплатно читать книгу Термодинамика реальных процессов, Вейник Альберт Иозефович-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Термодинамика реальных процессов
Название: Термодинамика реальных процессов
Дата добавления: 16 январь 2020
Количество просмотров: 190
Читать онлайн

Термодинамика реальных процессов читать книгу онлайн

Термодинамика реальных процессов - читать бесплатно онлайн , автор Вейник Альберт Иозефович
 

В монографии приводятся ряд новых законов термодинамики, нетрадиционное определение времени и пространства и способы управления последними, описаны устройства, нарушающие второй закон термодинамики Клаузиуса, третий закон механики Ньютона и закон сохранения количества движения. Установлен факт существования сверхтонких миров и объектов, которые живут вне времени и пространства и взаимодействуют с нами по законам добра и зла. В новом свете предстают суть человека, свобода воли, цель жизни, мышление, память, сновидения, нарушения психики и интересующая всех проблема здоровья. Дается объяснение физического механизма так называемых аномальных явлений (парапсихология, полтергейст, НЛО и т.п.), показано, что все они суть некий единый феномен, порождаемый сверхтонким миром зла, который проникает в нас и манипулирует нашими сознанием и здоровьем.

Предназначена для научных и инженерно-технических работников, преподавателей, аспирантов, студентов и широкого круга читателей, интересующихся этими вопросами.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 48 49 50 51 52 53 54 55 56 ... 150 ВПЕРЕД
Перейти на страницу:

Нетрудно сообразить, что процессы поглощения термического вещества суть прямое следствие наличия универсального взаимодействия, без которого они были бы невозможны. Универсальное взаимодействие связывает между собой в ансамбле порции разнородных веществ. Именно поэтому некоторое данное вещество, распространяющееся под действием сопряженного с ним убывающего интенсиала, увлекает за собой остальные вещества, которые благодаря этому приобретают способность преодолевать возрастающие значения сопряженных с ними интенсиалов. Таким образом, утрачивает силу известная идея одностороннего развития мира, вытекающая из принципа возрастания энтропии во всех реальных процессах. Действительность такова, что процессы обратного направления - с убыванием энтропии - встречаются в природе столь же часто, как и прямого, - с возрастанием энтропии. Заботу об этом берут на себя закон экранирования, первое и второе начала ОТ и универсальное взаимодействие.

Работа  dQЭ , совершаемая переносимыми ансамблями, является термической работой, или теплотой. В термодинамике ее принято называть работой, или теплотой, трения. Для обозначения процессов выделения теплоты трения применяется также термин «диссипация», что означает рассеяние. Еще со времен Клаузиуса утвердилось представление о том, что теплота трения способна только выделяться, поэтому в реальных процессах вследствие выделения теплоты диссипации различные формы движения материи превращаются в теплоту, а последняя рассеивается в окружающей среде. Это и послужило основанием для принятия термина «диссипация».

Ранее закон (222) я тоже по инерции называл законом диссипации, хотя мне уже было известно, что мера количества термического вещества в противоположность энтропии способна не только возрастать, но и уменьшаться; об этом говорится, например, в книге [11, с.143], где термическое вещество именуется термическим зарядом. Наконец, в монографии [21, с.86] я окончательно перешел к новому термину «экранирование», который лучше отражает реальную действительность, чем прежний. Ведь фактически никакого рассеяния, обесценивания энергии в природе не происходит, так как экранированное термическое вещество способно не только выделяться, но и поглощаться: прежде чем выделиться, оно должно сначала где-то поглотиться в соответствующем процессе. Этим самым обеспечивается непрерывный и бесконечный круговорот энергии в природе.

Процессы прямого и обратного направлений можно трактовать как процессы плюс- и минус-трения, диссипации и минус-диссипации. Все это позволяет по-новому взглянуть на проблему обратимости и необратимости реальных процессов, возникшую на основе теории Клаузиуса, а также навести соответствующий порядок в имеющихся определениях, понятиях и терминах [18,20,21] [ТРП, стр.194-197].

 5. Седьмое начало ОТ, или обобщенный закон заряжания.

В ходе стыковки первого и второго начал ОТ с четырьмя остальными были сформулированы законы заряжания и экранирования. В результате для определения энергии мы располагаем уже тремя типами различных уравнений (31), (220) и (222). Требуется выяснить, не противоречат ли эти уравнения друг другу, не дублируют ли одно другое и как связаны между собой энергии  U ,  U3  и  UЭ .

Чтобы правильно ответить на эти и другие вопросы, попытаемся мысленно синтезировать нашу систему, последовательно заряжая ее различными чистыми веществами - не ансамблями, - начиная с нуля, то есть с единичного кванта какого-либо вещества. В данном случае контрольную поверхность по необходимости пронизывают все вещества, пошедшие на образование системы, включая термическое, которое частично расходуется на изменение теплового состояния, а частично экранируется, уже находясь внутри системы. Следовательно, в рассматриваемых условиях все вещества без исключения проигрывают на контрольной поверхности роль основных и поэтому в соответствии с уравнением (31) определяют полную энергию ансамбля  U , полное количество его поведения. Те вещества, которые продолжают выполнять эту роль внутри системы, дают энергию заряжания  U3 , определяемую уравнением (220) закона заряжания. Часть термического вещества, которая не участвует в заряжании, экранируется в системе, она дает энергию  UЭ , определяемую уравнением (222) закона экранирования. Такова субординация энергий U ,  U3  и  UЭ .

Не менее наглядно суть величин U ,  U3  и  UЭ  выступает, если происходит распад ансамблей на отдельные простые вещества. При этом система совершает работу, проталкивая через контрольную поверхность все свои вещества. Работа совершается в процессе силового поведения вещества, причем мерами качества поведения служат интенсиалы, являющиеся аналогами силы, а мерой количества поведения — энергия, равная работе и определяемая уравнением (31). При полном распаде высвобождается вся энергия ансамбля  U , соответствующая полному количеству его силового поведения. Из этого количества доля  U3  принадлежит веществам, участвовавшим в заряжании, а доля  UЭ  - термическому веществу, которое играло роль экранированного.

Следовательно, величина  U  состоит всего из двух частей: энергии заряжания  U3  и энергии экранирования  UЭ , то есть

U = U3 + UЭ        (224)

или в дифференциальной форме

dU = dU3 + dUЭ = dQ3 + dQЭ = ? dPdE – dPdE   (225)

Известное различие смысла слагаемых правой части этого уравнения делает нецелесообразным объединение их в одно слагаемое.

Если система располагает несколькими степенями свободы, то общее изменение энергии получается в виде соответствующей суммы, причем знак каждого из слагаемых определяется по правилам, изложенным выше применительно к уравнениям (220) и (222).

Дифференциальное уравнение (225) выражает седьмое начало ОТ. Оно определяет изменение энергии системы в виде суммы двух слагаемых, первое из них соответствует изменению энергии, обусловленному работами заряжания, а второе - работами экранирования.

Таким образом, седьмое начало ОТ объединяет законы заряжания и экранирования. При этом оба рассматриваемых процесса - заряжания и экранирования - сопровождаются подводом (или отводом) к системе определенных веществ. Следовательно, если отвлечься от того факта, что в первом случае вещество может быть любым, а во втором - только термическим, а также от некоторых других тонкостей этих процессов, тогда термин «заряжание» можно условно распространить и на экранирование. В результате седьмое начало ОТ приобретает смысл обобщенного закона заряжания.

Седьмое начало похоже на первое тем, что оба они определяют энергию системы. Однако между ними имеются и существенные различия. Первое начало выражает энергию через работы (34), которые совершаются на контрольной поверхности и представляют собой универсальные меры количества воздействия на систему со стороны окружающей среды. Иными словами, первое начало определяет энергию через внешние по отношению к системе характеристики. В противоположность этому седьмое начало определяет энергию через работы, которые выражаются с помощью внутренних характеристик системы (см. формулы (220) и (222)). Отсюда должно быть ясно, что первое и седьмое начала не противоречат и не дублируют, а дополняют друг друга.

Седьмое начало найдено в ходе взаимной припасовки шести предыдущих, без него совокупность начал оказывается незамкнутой, ибо в ней отсутствует самое важное, обобщающее, связующее звено, которое призвано объединить первые шесть начал в единое гармоничное целое. Кроме того, благодаря седьмому началу удается по-новому взглянуть на первое и обнаружить в нем определенные существенные недостатки. Вследствие этого седьмое приобретает не меньшую, если не большую, ценность для теории и практики, чем первое. Седьмое начало впервые было сформулировано в ОТ [29, с.6], оно особенно необходимо для целей переосмысливания прежней теории и получения на этой основе новых результатов, не доступных для традиционных представлений.

В свете изложенного становится ясно, что величины U ,  U3  и  UЭ  различаются между собой весьма существенно. Энергия  U  сохраняет за собой право именоваться универсальной мерой количества поведения, которым располагает ансамбль. Энергии  U3  и  UЭ  тоже являются мерами количества поведения, но каждая из них характеризует только ограниченные частные свойства ансамбля, связанные с эффектами заряжания и экранирования, на частный характер этих энергий указывают индексы «З» и «Э».

1 ... 48 49 50 51 52 53 54 55 56 ... 150 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название