Юный техник, 2000 № 11
Юный техник, 2000 № 11 читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Надо сказать, что потребность техники в точном знании теплоемкости с каждым годом росла. И ученые-экспериментаторы всячески шли ей навстречу, хотя это было не просто. Вот как, например, выяснили теплоемкость газов. Из-за малой плотности определять ее непосредственно, как, например, это делается для твердых тел на лабораторных работах в школе, не удавалось. Приходилось прибегать к косвенным методам.
Один из них основан на измерении скорости звука в газе. Газом наполняется длинная труба. С одной стороны она закрыта упругой стальной мембраной, по которой ударяют молотком.
АППАРАТ ШЕНТЬЕ ДЛЯ УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ.
Четыре одинаковых по размерам и массе цилиндра из различных металлов нагревают в ванне с кипятком и ставят на брусок парафина, и каждый из них погружается в парафин па глубину, пропорциональную теплоемкости вещества, из которого он сделан.
ДВИЖЕНИЕ БРОУНОВСКОЙ ЧАСТИЦЫ под микроскопом, зарисованное наблюдателем, характеризует тепловое движение атомов и молекул, своеобразный образец хаоса.
Время распространения звуковой волны в газе регистрируется точным прибором. Зная температуру и плотность газа, расчетным путем по формуле Лапласа находится теплоемкость.
Шелест показал, что только лишь ошибка в измерении скорости звука на одну сотую секунды дает в этом опыте ошибку в измерении теплоемкости на 46,6 процента! А ведь есть еще неточности в измерении температуры, плотности и много-много других. Не отличались точностью и другие методы. Но как бы там ни было, ученые к началу 20-х годов значительно повысили точность измерения теплоемкости.
И тут оказалось, что теплоемкости очень многих газов по мере уточнения стали приближаться к величинам, найденным по формулам закона теплоемкости. То же относилось к жидким и твердым телам. Уже это доказывало справедливость закона.
Однако не все шло гладко. Во многих случаях закон давал расхождение с экспериментом в целое число раз. Алексей Нестерович объяснил это тем, что в отдельных случаях либо число атомов в молекуле измерено неверно, либо сами молекулы объединялись в группы, участвующие в тепловом движении в роли отдельных целых частиц. Наиболее красноречиво это выглядит на примере воды и льда. Известно, что теплоемкость воды в два раза больше, чем теплоемкость льда. Отсюда можно сделать вывод, что вода имеет молекулу, число атомов которой в два раза больше, чем у молекулы льда.
С учетом подобных допущений было проанализировано 242 известных в то время опыта по определению теплоемкостей различных веществ, и оказалось, что ни один из них в пределах точности измерения не противоречит закону теплоемкости.
Но при этом выяснилась еще одна удивительная вещь. Все химические элементы таблицы Менделеева ведут себя в процессах нагревания и охлаждения как вещества, состоящие из двух атомов. Исключение составляют только бор, бериллий и углерод.
Они подобны веществам одноатомным.
Работа Шелеста была встречена благожелательными откликами ведущих специалистов Европы. Но… автор был занят множеством очень важных дел: тут и разработка нового двигателя, и закупка в Англии паровозов для Советской Республики, и работа над тепловозом…
Так что уделить достаточно времени закону теплоемкости он не мог. И о законе постепенно стали забывать.
Рискнем предположить, что очень многим эта забывчивость была выгодна. Ведь закон теплоемкости лишал их спокойной, престижной, прекрасно оплачиваемой работы. Ведь так хорошо: заполнил газом трубу с мембраной и стучи себе молотком год или два…
ТЕПЛОВАЯ ВСЕЛЕННАЯ ШЕЛЕСТА. Интерпретация ряда экспериментов в свете «Закона теплоемкости» показывает, что теплота не столь хаотична, как мы думаем. Молекулы и атомы веществ за исключением бора, бериллия и углерода участвуют в тепловом движении как минимум парами.
Сегодня достаточно точный расчет теплового двигателя весьма трудоемок, поскольку сопровождается поэтапным заглядыванием в таблицу теплоемкости. Введение ее в память компьютера проблемы не решает, поскольку программа остается достаточно сложной, требует больших затрат на разработку.
Применение формул закона теплоемкости позволяет ту же работу и с более высокой точностью выполнить при помощи простейшей программы, занимающей не более двадцати строчек. Да и в случаи определения теплоемкости любого вещества закон теплоемкости мог бы ускорить работу в десятки раз. Теперь она бы сводилась только к определению температур фазовых переходов, где теплоемкость вещества скачкообразно меняется. Все остальные значения определялись бы по приведенным формулам профессора Шелеста.
Если бы подобная стратегия была принята, то неизбежно возникло бы желание физически объяснить явления, происходящие при этих скачках или фазовых переходах.
Но тут мы вновь подходим к вопросу, который вызывал шок у химиков, да, вероятно, уже возник и у многих читателей. Неужели при определении числа атомов в молекуле допущены столь грубые ошибки и о каких молекулах можно говорить в отношении инертных газов? Вопросы серьезные.
Вероятно, отвечать на них придется с изменения терминологии. Попробуем допустить, что молекулы попросту объединяются в комплексы и ведут себя как частицы, число атомов в которых кратно числу атомов в молекуле. Природу этой связи необходимо выяснить. Она должна быть иной, чем связь атомов в молекулах или молекул в полимерах. Не химической по своей природе.
Поэтому она и ускользала от глаз химиков. Поэтому на нее не распространяется запрет, действующий в рамках химии для инертных газов. Их атомы в процессе теплового движения могут объединяться в пары, но только под действием особых сил. Назовем их силами Шелеста. Добавим к этому, что закон теплоемкости фундаментален. Он многое меняет не только в наших взглядах на строение вещества, но и на второе начало термодинамики и, возможно, на наши представления о свойствах пространства-времени.
Если вас заинтересовало рассказанное выше, разыщите работу А.Н.Шелеста «Закон теплоемкости» (Машгиз, 1946 г.) и познакомьтесь с его выводами.
Предупреждаем — не пугайтесь. Закон его прост и изящен. Доступен любому студенту третьего курса. Желаем успехов.
к. т. н. П. ШЕЛЕСТ, А. ИЛЬИН
У СОРОКИ НА ХВОСТЕ
ОТКУДА МАТЕРИЯ? Американские астрономы обнаружили источник вещества, из которого рождаются звезды в нашей Галактике. Многолетние исследования показали, что в системе Млечного Пути каждый год зажигается как минимум по одной звезде. Это происходит благодаря гравитационному сжатию космического газа, запасы которого по расчетам должны были истощиться еще миллиарды лет тому назад.
Этот парадокс разрешили ученые из Мичиганского университета. В статье, опубликованной в журнале «Нейчур», они пишут, что наблюдения, проведенные с помощью телескопа «Хаббл», показали: Млечный Путь постоянно получает материю от мощных газовых облаков, которые с большой скоростью перемещаются в межгалактическом пространстве.
Эти облака были открыты еще в середине 60-х годов, однако их роль до недавнего времени была не ясна. Теперь стало понятно, что они подобно земным облакам, несущим влагу для произрастания растений и питания рек, доставляют материю для «производства» новых звезд и других небесных тел.