Космос — землянам
Космос — землянам читать книгу онлайн
Дважды Герой Советского Союза, летчик-космонавт СССР, заслуженный летчик-испытатель, руководитель Центра подготовки космонавтов Г. Береговой рассказывает о том, зачем мы штурмуем космос, оправданы ли усилия на покорение космоса, что человечество получит от этих усилий.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Еще в начале века К. Циолковский, предвидя проблемы освоения космоса, предлагал использовать для этих целей растения, их замечательное свойство — поглощать углекислый газ и вырабатывать кислород. В его представлении система замкнутого цикла жизни выглядела как оранжерея. «Тогда не придется более расходовать запасов кислорода и пищи, — утверждает К. Циолковский устами одного из героев своей книги „Вне Земли“, — избыток растений нам даст и то и другое. Все наши выделения и отбросы также целиком будут поглощаться. Мы будем брать от растений столько же, сколько и давать им…»
Подобные космические оранжереи, цветущие сады за пределами нашей планеты для современной космонавтики — голубая мечта, дело отдаленного будущего. Однако сама идея круговорота веществ, как теперь говорят, вполне конструктивна, то есть поддается реализации и на нынешней технической основе. Во всяком случае, ученые уже давно задумались над путями ее осуществления, хотя бы и частично.
В поисках подходящих растительных организмов специалисты обратили внимание на хлореллу — микроскопическую зеленую водоросль. Специалистам приглянулись ее универсальные свойства. Правда, обычные «сухопутные» растения дают кислорода больше, чем хлорелла, но явно не могут с ней соперничать в другом отношении: слишком они громоздки, занимают много места. К тому же хлорелла не только «генератор» кислорода, но и вполне съедобная биомасса, содержащая почти все необходимые человеческому организму вещества. Она наполовину состоит из белка, а другая ее половина — это жиры, углеводы, витамины.
Начались широкие опыты с хлореллой и на Земле и в космосе. Например, в Красноярском институте физики Сибирского отделения АН СССР построили компактный культиватор хлореллы. Он поглощал углекислый газ, выделяемый человеком при дыхании, а под светом мощной лампы водоросли вырабатывали кислород. Испытатели неделями жили в герметической кабине и дышали кислородом, который обеспечивал культиватор. Кюветы общей поверхностью около восьми квадратных метров, содержавшие хлореллу «живым весом» всего-навсего полтора килограмма, полностью удовлетворяли потребности в кислороде одного человека.
С небольшой химической доочисткой через культиватор хлореллы совершала круговорот и вода.
Эти и многие другие эксперименты убедительно показали, что хлореллу удобно использовать в космосе как источник кислорода и воды. Технически вполне возможно построить автоматизированную бортовую установку на основе хлореллы, которая успешно будет соперничать с традиционными физико-химическими регенераторами кислорода и воды, разумеется, в случае достаточно длительного срока действия. К тому же совсем недавно обнаружена у хлореллы и еще одна очень ценная для космонавтики способность — очищать атмосферу от вредных примесей. Но на пищевом фронте позиции знаменитой водоросли оказались не такими прочными. Человеку трудно привыкнуть к пище из водорослей, даже если она очень полезна и питательна.
Вот почему ученые продолжают искать других кандидатов на роль биологических звеньев систем жизнеобеспечения, в том числе и среди высших растений. В свое время К. Циолковский, например, ратовал за бананы. Теперь же специалисты предпочтение отдают растениям попроще, таким, как картофель, пшеница, свекла, редис, капуста, морковь.
Между прочим, подбор культур для космического огорода — дело далеко не простое. Только у нас в стране возделывается свыше четырехсот видов съедобных растений, и у каждого из них есть свои достоинства. Первое, что требуется от претендента на космическую судьбу, — высокая урожайность. Не менее важен и состав получаемой биомассы. Комплекс растений надо подобрать так, чтобы был обеспечен наиболее полезный, питательный «букет» веществ.
В ежедневном рационе человека большая часть по весу принадлежит углеводам. Кому из растений можно поручить роль их поставщика? Пока называют среди главных претендентов картофель, свеклу и пшеницу. Почему пока? Дело в том, что эти растения возделывались только в полевых условиях. О том, насколько удастся их приспособить для космических оранжерей, ничего не известно. В этом отношении они для специалистов знакомые незнакомцы. Развернули опыты по их выращиванию в контролируемых условиях, на различных питательных почвах, чтобы выяснить, как эти растения ведут себя при искусственном освещении, решить другие вопросы. Эксперименты показали, например, что урожай картофеля в подобных условиях повышается в два раза.
От опыта к опыту растения, что готовятся к полетам в космос, как бы заново открываются для человечества. И это не может не сказаться на земной сельскохозяйственной практике.
Так космос приучает по-новому взглянуть на природу, использовать ее ресурсы наиболее эффективно, наиболее полно.
Проверку проходят и те качества, на которые прежде не обращали внимания. Кого могло интересовать, как картофель будет реагировать на действие радиации? А для космических оранжерей это важно. Вдруг под воздействием космических излучений картофель, допустим, переродится и через несколько поколений его клубни окажутся несъедобными? Или произойдут с ними другие какие-то метаморфозы?
Не менее важно заранее убедиться и в том, что растения будущего «заоблачного огорода» совместимы с человеком. Ведь есть немало представителей зеленого царства, с которыми мы прекрасно уживаемся, когда они растут на воле, но стоит оставить их на ночь в доме, как может случиться неприятность, а то и беда. Речь идет о летучих веществах, выделяемых растениями в процессе их «дыхания». Таким дорога в космос должна быть надежно закрыта, иначе они могут оказать неблагоприятное воздействие на космонавтов.
Тщательно и разносторонне исследуют ученые характер и возможности растений, прежде чем рекомендовать их в космический полет. Был проведен, например, уникальный эксперимент, во время которого три испытателя целый год находились в «земном звездолете». К герметической кабине, где жили испытатели, подключалась оранжерея с высшими растениями. В кюветах на специальных смолах, насыщенных необходимыми для развития растений элементами выращивались капуста, кресс-салат, укроп, огуречная трава. Эта небольшая оранжерея работала в режиме конвейера — все время была свежая зелень. Каждые сутки участники эксперимента имели нужное количество зеленой массы, богатой витаминами. Ученые убедились, что в герметически замкнутом помещении можно выращивать высшие растения, многократно используя воду, и что они совместимы с человеком — не оказывают друг на друга неблагоприятного влияния.
В другом похожем эксперименте «биологическое звено» образовали из трех частей: человека, культиватора хлореллы, о котором я уже упоминал, и специальной камеры с искусственным климатом — фитотрона, где росла пшеница. В течение длительного времени испытатели находились в герметическом помещении и дышали воздухом, кислород для которого предоставляли хлорелла и пшеница в обмен на углекислый газ. Был налажен и круговорот воды в этой замкнутой системе. Все три ее составные части показали полную биологическую совместимость.
Любопытно, что в этом эксперименте испытатель сам занимался возделыванием пшеницы, выступал, так сказать, в роли хлебороба. Установка, заменявшая поле, представляла собой герметичную камеру с прозрачной крышкой; сквозь нее круглые сутки лился свет. «Почвой» служили планки с отверстиями, в которые высевались зерна. Корни и стебли через отверстия выходили наружу. Корни периодически омывались питательным раствором. Пленки свободно перемещались, поэтому ширину междурядий можно было легко регулировать, чтобы наиболее рационально использовать освещаемую площадь. Плоды своих трудов испытатель в прямом смысле «вкушал сам», так как из выращенного зерна выпекался хлеб.
Ряд экспериментов с несколькими испытателями (общей длительностью — 6 тысяч часов) привел ученых к выводу, что конвейерное возделывание пшеницы на площади 20 квадратных метров способно обеспечить растительную долю белковой и значительную долю углеводной части суточного рациона одного человека. Длительность непрерывного действия системы превышала сто суток, а жизнь человека в ней — три месяца. При этом не обнаружено никаких биологических препятствий для дальнейшего увеличения сроков работы всей системы.