О станках и калибрах
О станках и калибрах читать книгу онлайн
Все машины — это детища машиностроительных заводов. На этих заводах работают металлообрабатывающие станки — те машины, с помощью которых изготовляются части — детали любых машин: паровозов, автомобилей и самолетов, тракторов и сельскохозяйственных комбайнов, турбин и двигателей внутреннего сгорания, всех рабочих машин, в том числе и самих металлообрабатывающих станков.
С помощью станков, созданных советскими инженерами, наш народ сказочно увеличил количество машин на заводах и фабриках и неизмеримо поднял производительность труда в советской промышленности.
В наши дни выдающиеся достижения советских станкостроителей служат прочной базой социалистического машиностроения, помогают советским людям в их победоносном шествии к коммунизму. Вот почему к станкостроению и металлообработке приковано особенно пристальное внимание всех советских людей.
Рассказам о главных изобретениях и усовершенствованиях в развитии станкостроения и металлообработки и посвящена эта книга.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Теперь начинается подача воздуха от компрессора, и открывается отверстие выходного сопла. Расход воздуха через это сопло и зазор уменьшают величину давления воздуха в коническом сосуде и поплавок устанавливается на каком-то другом определенном уровне. Рядом с {160} коническим сосудом, параллельно его оси, расположена измерительная шкала и можно отметить то ее деление, на котором поплавок «замер».
После этого набор плиток убирается; составляется другой набор размером в 4,990 миллиметра и подводится под измерительную головку. Теперь зазор между срезом сопла и верхней поверхностью набора плиток увеличился на 10 микронов — значит, и скорость истечения воздуха из сопла увеличилась, а поэтому еще раз изменится давление в коническом сосуде; оно уменьшится, поплавок опустится еще ниже и «замрет» на другом уровне, а на шкале отметится соответствующее деление.
Получилось так, что на шкале отмечены пределы допусков измеряемой величины. Осталось убрать второй набор плиток и вместо него ввести под измерительную головку проверяемую деталь. Зазор между соплом и ее верхней поверхностью изменится в какую-то сторону — уменьшится или увеличится — и поплавок немедленно «почувствует» это, он переместится по оси конического сосуда и «замрет» на новом уровне. Если соответствующее деление измерительной шкалы окажется между двумя ранее отмеченными ее штрихами,— все в порядке, деталь правильно изготовлена; если же поплавок «подскочит» выше верхней отметки или «нырнет» ниже другой отметки, деталь неправильно изготовлена: в первом случае она «полнее» и ее еще можно «довести» до правильного размера, а во втором — она «запорота» и пойдет в брак.
Машиностроители научились сопоставлять величину перемещения поплавка по шкале с размерами измеряемых деталей (такое сопоставление называется «градуировкой» шкалы). Благодаря этому шкала воздушного микрометра не только показывает, насколько правильно, по допускам, изготовлена деталь, но и дает ее прямой размер. И, самое главное, этот размер указывается с удивительной точностью.
Вспомните, как работают рычажные и рычажно-оптические измерительные приборы. Они так устроены, что ничтожное изменение размера проверяемой детали вызывает в 50, 100, 200, 500 и даже в 1000 раз большее передвижение стрелки указателя по измерительной шкале. Поэтому легко отсчитываются изменения размеров даже в 0,5 микрона. Существуют и такие рычажно-оптические {161} приборы, в которых перемещение указателя в 16 000 раз больше величины изменения размера проверяемой детали Это значит, что можно отсчитывать изменение размера с точностью до 0,000025 миллиметра (до 1/40 доли микрона, или до 25 миллимикронов).
Воздушный микрометр с окрашенным водяным столбиком (вместо воздушного поплавка): 1 — головка с выходным отверстием для воздушной струи; 2 — универсальная стойка; 3 — душный микрометр и проверяемый предмет; 4 — столик для проверяемых деталей; 5 — шкала; 6 — трубка с водяным столбиком
Воздушный микрометр отличается тем, что его поплавок также перемещается по шкале на расстояние, в 10—12 тысяч раз большее, чем величина, на которую изменился зазор между срезом сопла измерительной головки и поверхностью проверяемой детали. Поэтому и этот прибор измеряет с такой же точностью.
Бывают и такие воз душные микрометры, в устройстве которых поплавок заменен подкрашенной водой в тонкой трубке. Эта трубка соединена с сосудом, в котором меняется давление подаваемого воздуха; уровень воды — в зависимости от этого давления — понижается или повышается. Рядом с трубкой — градуированная шкала. Величина перемещения уровня воды в трубке отмечается делениями шкалы. Именно такой воздушный микрометр и применяется, когда необходимо измерить величину той тончайшей воздушной прослойки, которая служит «смазкой» в подшипнике машины, о которой шла речь. {162}
Еще в начале XX столетия для тончайших измерений в физике понадобилась единица измерения пространства, с помощью которой можно было бы выражать величины расстояний между атомами внутри вещества, длины световых волн и, особенно, рентгеновых лучей. Такая единица измерения была установлена размером в одну десяти-миллионную миллиметра — ее назвали «ангстрем». Так, например, длину волны красного света кадмия, равную 0,644 микрона, удобнее выразить в ангстремах: 6,44 ангстрема. Казалось, что применяемые в технике измерительные приборы никогда не «дойдут» до такой точности. Однако в наше время показания наиболее чувствительных рычажно-оптических приборов и воздушных микрометров можно выразить и в ангстремах. В самом деле, ведь 0,000025 миллиметра — это 250 ангстремов.
Остановилась ли на этом техника измерительного дела в (машиностроении? Практически, да! Даже для самых тонких измерений в промышленности нет нужды в большей точности. Но возможности измерительной техники позволяют еще и еще увеличивать степень точности.
Как-то недавно в американских газетах и журналах появилась крикливая реклама одной фирмы, занимающейся производством измерительных приборов для промышленности. На все лады расхваливался новый рычажно-оптический прибор, в котором изменение проверяемого размера отмечалось перемещением указателя по шкале на расстояние, которое было в 6 000 000 раз больше. Так как глаз опытного наблюдателя-контролера довольно легко мог «отметить» перемещение указателя на 1/4 миллиметра, то это означало, что можно было осуществлять измерения с точностью до 1/24 000 000 миллиметра, или до 0,4 ангстрема (приближенно).
Но так случилось, что и у нас в СССР понадобился прибор такого же назначения, но еще более точный. И в научно-исследовательском бюро взаимозаменяемости было создано измерительное устройство, в котором каждому микроскопическому изменению размера соответствовало перемещение указателя по шкале на расстояние в 12 000 000 раз большее. Американская сверхточность была превзойдена в два раза. Если бы возникла практическая необходимость, советский прибор мог бы измерять с точностью до 1/48 000 000 миллиметра, или до 0,2 ангстрема. Величина этой точности в 1 500 000 раз меньше толщины человеческого волоса. {163}
Так наступило время, когда возможная точность измерения не только не отстает от точности изготовления деталей машин, но и намного опережает ее.
Машиностроители искали и находили много других способов точного измерения, особенно для затруднительных случаев, когда измеряемая величина трудно доступна или вовсе недоступна с помощью обычных инструментов и приборов. Они применяют для этой цели электрические и электромагнитные способы измерения и даже рентгеновские лучи и технику ультразвука. Рассказа обо всех этих чудесах измерительной техники нет в этой книжке. Автор не ставил перед собой цель описывать все виды измерительной техники или подробно растолковывать устройство тех приборов, о которых шла речь. Исключение сделано лишь для очень распространенных измерительных инструментов и приборов, которыми приходится пользоваться на каждом шагу в цехе, в мастерской.
Но о роли электричества в измерительной технике машиностроителей следует рассказать подробнее. Электричество оказалось наибольшей силой в деле создания высокопроизводительных автоматических линий станков. И оно же наилучшим образом приспособило к этим линиям измерительную технику, позволило создать «автоматических контролеров», сверхбыстрых и сверхточных.
Автоматические контролеры
Еще 200 лет назад понадобилось ускорить процесс проверки весов и размеров таких массовых изделий, как снаряды-ядра или монеты. Здесь нельзя было допускать выборочную проверку — надо было взвесить каждую монету или обмерить каждое ядро. А для этого нужно было много контролеров и много времени.
К XVIII столетию относится появление специального станочка для проверки размера ядер с постоянным кольцевым калибром и двумя наклонными поверхностями: если ядро проходило сквозь кольцо, оно тут же скатывалось по одной поверхности в кучу годных, принятых снарядов; если ядро не проходило сквозь кольцо,— легкое движение контролера скатывало его по другой поверхности в кучу негодных, непринятых снарядов. Такое приспособление намного ускоряло работу контролеров. {164}