История электротехники
История электротехники читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В своем докладе на Международном конгрессе электриков в г. Франкфурте-на-Майне (1891 г.) он показал, что магнитный поток в магнитопроводе катушки, включенной в цепь переменного тока, целиком определяется напряжением (если считать частоту и число витков заданным) и не зависит от магнитного сопротивления. С изменением магнитного сопротивления меняется только намагничивающий ток. Это положение, которое М.О. Доливо-Добровольский называет первым основным положением теории переменного тока, действительно является исходным во всех расчетах электромагнитных устройств. Далее он отметил, что если магнитный поток изменяется синусоидально, то ЭДС (или соответственно напряжение) также изменяется по закону синуса, причем ЭДС и магнитный поток различаются по фазе на π/2. Он ввел понятия активной и реактивной составляющих тока, которые назвал соответственно ваттным (рабочим) и безваттным (возбудительным) токами. Метод разложения любого тока на две составляющие был рекомендован М.О. Доливо-Добровольским для практических расчетов и анализа процессов в электрических машинах и аппаратах.
М.О. Доливо-Добровольский рекомендовал принять в качестве основной формы кривой тока синусоиду. В отношении частоты тока он высказался за 30–40 Гц. Позднее в результате критического отбора получили применение лишь две частоты промышленного тока: 60 Гц в США и 50 Гц в других странах. Эти частоты оказались оптимальными, ибо повышение частоты ведет к чрезмерному возрастанию частоты вращения электрических машин (при том же числе полюсов), а ее снижение неблагоприятно сказывается на равномерности освещения.
Следует отметить, что в 1888 г. У. Томсон показал возможность применения гармонического анализа Фурье для любого периодического (несинусоидального) тока. (Французский ученый Жак Батист Фурье (1768–1830 гг.) предложил свой знаменитый метод в 1822 г., разрабатывая теорию тепла).
3.7. ЭЛЕКТРОПРИВОД, ЭЛЕКТРОТРАНСПОРТ И ЭЛЕКТРОТЕХНОЛОГИИ
Как известно, одними из наиболее распространенных в промышленности являются механические процессы. Поэтому уже в 70–80-х годах XIX столетия начинает проявляться стремление электрифицировать эти процессы, т.е. осуществить электрический привод различных исполнительных механизмов. Однако до начала 90-х годов применение электропривода носило эпизодический характер. Лишь в некоторых случаях, когда предприятия располагали блок-станциями для электрического освещения, электродвигатели применялись для привода вентиляторов, насосов, подъемников и других механизмов. Следует отметить, что на Всероссийской политехнической выставке в 1872 г. В.Н. Чиколев впервые демонстрировал швейную машину с электрическим приводом — это был первый в мире «электрифицированный станок».
Положение изменилось коренным образом в связи с изобретением асинхронного двигателя. В достаточно короткий срок этот тип двигателя занял доминирующее положение в системе электропривода промышленных предприятий. Чрезвычайная простота асинхронного двигателя, особенно с короткозамкнутым ротором, его надежность и невысокая стоимость позволяют установить в любом цехе сотни и тысячи двигателей при небольшом обслуживающем персонале. Такие двигатели могут выполняться в герметических корпусах, и, следовательно, их можно использовать в тяжелых условиях: в атмосфере повышенной влажности, бензиновых паров и т.п. Асинхронные двигатели без повреждений выдерживают значительные кратковременные перегрузки, тогда как в двигателях постоянного тока любая перегрузка ускоряет износ коллектора.
Существенным недостатком асинхронного двигателя является трудность регулирования частоты вращения. Поэтому до настоящего времени еще очень велик удельный вес регулируемых машин постоянного тока в системе промышленного электропривода. Недостатком асинхронных двигателей с короткозамкнутым ротором также является ограничение их мощности условиями пуска. Это обстоятельство в начальный период развития трехфазной техники, когда мощности электрических станций были невелики, заставляло во многих случаях отказываться от применения двигателей с короткозамкнутым ротором. Мощные двигатели с короткозамкнутым ротором применялись только в случаях, когда они питались от отдельного генератора. Такие установки часто использовались, например, в водокачках.
Практически развитие электропривода происходило двумя неравнозначными путями. Первый, наиболее типичный, — замена паровых двигателей, работавших на трансмиссию. Это был путь создания крупногруппового электропривода, который не исключал тяжелых производственно-гигиенических условий, определявшихся наличием трансмиссий. Второй путь — эпизодическое применение одиночного привода. Последнее, как правило, имело место только в случае крупных ответственных исполнительных механизмов, предъявлявших специфические требования к приводному двигателю (привод кранов, центрифуг, прокатных станов и т.п.). Но уже в конце века практика наглядно убеждала в преимуществах одиночного привода.
Последний вид привода освобождает промышленное предприятие от трансмиссий и, главное, позволяет работать каждому отдельному исполнительному механизму при переменных нагрузках и наивыгоднейших скоростях, а также позволяет ускорить пуск и изменение направления вращения. Одиночный привод оказал существенное влияние и на конструкцию самого исполнительного механизма. Сближение приводного двигателя с исполнительным механизмом иногда получалось настолько тесным, что конструктивно они представляли собой единое целое. Например, в случае электропривода рольганга ролик, служащий для перемещения металла, является наружным ротором асинхронного двигателя.
В 70-х и особенно 80-х годах XIX в. проводилось много работ по применению электричества на транспорте. Так называемые конно-железные дороги уже не удовлетворяли возросших потребностей городского населения, а применение парового городского транспорта оказалось неприемлемым из-за дыма и копоти. Реальная возможность для проведения опытов по электрификации транспорта появилась после изобретения генератора Грамма.
Во всех случаях, когда электрическая энергия для питания тягового двигателя генерировалась гальванической или аккумуляторной батареей, техническое решение шло в направлении создания автономных устройств тяги, т.е. таких, в которых как генерирующая установка, так и электродвигатель были размещены на самом экипаже или судне. Когда же для выработки электроэнергии стали применять генераторы Грамма, приводимые в действие соответствующими паровыми агрегатами, система автономной электрической тяги перестала распространяться. Проблема электрической тяги могла найти решение лишь при условии разработки приемов экономичной передачи электроэнергии от места ее генерирования к движущемуся экипажу, вагону и т.п. Таким образом, электрическая тяга могла развиваться в виде неавтономной тяги с применением методов экономичной передачи электроэнергии на расстояние.
Система автономной электрической тяги, однако, не была полностью отвергнута; усовершенствование аккумуляторов позволило устраивать систему автономной тяги, пользуясь смонтированной в вагоне или на судне аккумуляторной батареей, током от которой питался электродвигатель.
В 1879 г. В. Сименсом была построена первая небольшая электрическая железная дорога на промышленной выставке (рис. 3.18.). Электрическая энергия по отдельному контактному рельсу передавалась к двигателю небольшого вагона, напоминавшего собой современную аккумуляторную тележку (электрокар); обратным проводом служили рельсы, по которым двигался «локомотив». К последнему были прицеплены три тележки, на которых могли разместиться 18 пассажиров.
В России первые опыты неавтономной электрической тяги были проведены Ф.А. Пироцким. Еще в 1875–1876 гг. он использовал для передачи электроэнергии обычный железнодорожный рельсовый путь. Чтобы улучшить проводимость рельсового пути, он применил стыковые электрические соединения, а для усиления изоляции двух ниток рельсов одной колеи (они были изолированы слоем окалины и шпалами) — смазку подошвы рельсов асфальтом.