Беседы о физике и технике
Беседы о физике и технике читать книгу онлайн
В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рассмотрим вкратце для примера работу пассивного затвора, представляющего собой жидкость, просветляющуюся под действием генерируемого излучения. После включения импульса накачки начинает создаваться инверсия населенностей энергетических уровней, однако затвор непрозрачен и генерация отсутствует. Появляющиеся фотоны за счет спонтанных переходов частотой hv21 = (E2 — E1)/h поглощаются активными центрами жидкости, и начинается просветление затвора. При частичном просветлении затвора начинается генерация излучения, число фотонов с частотой hv21 резко возрастает, затвор быстро и окончательно просветляется. В результате возникает гигантский импульс лазерного излучения. По окончании действия импульса накачки затвор снова становится непрозрачным — до следующего импульса накачки, т. е. действие пассивного затвора полностью регулируется импульсами накачки. В качестве просветляющихся жидкостей применяют фталоцианин в нитробензоле, криптоцианин в нитробензоле и др.
РАССКАЖИТЕ О ГАЗОВЫХ ОКГ.
Активные центры в газовых ОКГ могут иметь разную физическую природу: либо это нейтральные атомы (атомные газовые ОКГ), либо ионы (ионные газовые ОКГ), либо молекулы (молекулярные газовые ОКГ).
В атомных газовых ОКГ энергетические уровни атомов находятся на расстоянии от 0,1 до 2 эВ, чему соответствует оптическое излучение в инфракрасной и видимой областях спектра (λ = 500÷10 000 нм).
В ионных газовых ОКГ переходы происходят между уровнями ионов. Расстояние между рабочими уровнями составляет от 2 до 10 эВ, чему соответствует излучение в видимой и ультрафиолетовой областях спектра (λ = 100÷500 нм).
В молекулярных газовых ОКГ переходы осуществляются между колебательными и вращательными уровнями молекул; расстояние между рабочими уровнями от 0,01 до 0,1 эВ, чему соответствует излучение в диапазоне сверхвысоких частот (СВЧ) и инфракрасной области спектра (λ= 106÷104 нм).
Активная среда газовых ОКГ расположена внутри газоразрядной трубки, а для накачки используют импульсные или стационарные виды разрядов.
Газы обладают высокой оптической однородностью и прозрачностью, это позволяет изготовлять длинные газоразрядные трубки (от нескольких десятков сантиметров до нескольких и даже десятков метров).
На рис. 48 приведена принципиальная схема газоразрядной трубки ОКГ на гелий-неоне (активная среда — гелий-неон, активные центры — атомы неона).
Рис. 48. Газовый ОКГ на гелий-неоне
Используется тлеющий разряд постоянного тока. Зеркала резонатора расположены вне газоразрядной трубки.
Для ОКГ на гелий-неоне характерны следующие параметры: выходная мощность 0,01 Вт, коэффициент полезного действия 0,01 %.
Одним из самых мощных современных: лазеров является молекулярный газовый ОКГ на углекислом газе. Активная среда в нем — смесь углекислого газа (около 1 мм рт. ст.), молекулярного азота (1 мм рт. ст.) и гелия (около 5 мм рт. ст.); активные центры — молекулы СО2. Используется тлеющий разряд, в верхний рабочий уровень молекулы СО2 заселяется за счет электронного возбуждения и неупругих столкновений с молекулами азота (время жизни этого уровня 10-1 с).
Для ОКГ этого типа характерны мощность порядка 10 кВт и КПД 10–20 %, генерируется инфракрасное излучение с λ = 1060 нм.
Кроме твердотельных и газовых существуют также жидкостные и полупроводниковые ОКГ, наиболее перспективные из которых позволяют получать излучение в широком интервале длин волн (от ультрафиолетовых до инфракрасных) при высокой мощности и КПД (порядка 30 % и более).
14. Лазеры за работой
Термоядерный синтез и лазеры. Кажется, что одно к другому не имеет никакого отношения. Что между ними общего? Однако не будем спешить. Напомним, что в результате слияния тяжелых изотопов водорода — дейтерия D и трития Т — выделяется огромное количество энергии. Этот процесс, обладающий высокой энергоемкостью (~1∙1011 Дж/г), носит название реакции термоядерного синтеза. Для того чтобы произошла эта реакция, ядра необходимо сблизить на расстояние (~1∙10-12 см. Преодолеть кулоновский барьер отталкивания ядер можно только одним способом — разогнать отталкивающиеся ядра до очень высоких скоростей, т. е. сообщить им большую кинетическую энергию.
Пожалуй, единственно возможный в физике путь осуществить условие, позволяющее многим ядрам вступать в реакцию синтеза, — это получить нагретый до очень высоких температур газ из дейтерия и трития. Температура газа, обеспечивающая слияние ядер, должна быть не менее 108 К.
НО ВЕДЬ ГАЗ, РАЗОГРЕТЫЙ ДО ТАКИХ ТЕМПЕРАТУР, ПРИОБРЕТАЕТ НОВЫЕ СВОЙСТВА?
При такой температуре электроны отрываются от ядер. Смесь ядер дейтерия и трития и соответственно оторванных от ядер электронов есть термоядерная плазма.
Для того чтобы в этой плазме при достижении температуры 108 К началась термоядерная реакция, необходимо выполнение определенного соотношения: nτ >1014 (критерий Лоусона). Здесь n — концентрация ядер (ионов) дейтерия и трития, а τ — время существования плазмы в горячем состоянии.
Таким образом, получение дейтериево-тритиевой плазмы с T >= 1∙108 К и с параметрами n и τ, удовлетворяющими критерию Лоусона, лежит в основе управляемого термоядерного синтеза (УТС). Осуществление управляемого термоядерного синтеза может обеспечить человечеству «вечное» энергетическое изобилие, поскольку запасы высококалорийного (1011 Дж/г) термоядерного топлива практически бесконечны.
КАК ПЫТАЮТСЯ РЕШИТЬ ПРОБЛЕМУ ПОЛУЧЕНИЯ УПРАВЛЯЕМОГО ТЕРМОЯДЕРНОГО СИНТЕЗА?
К решению этой грандиозной задачи, являющейся в науке задачей № 1, ученые идут двумя путями. Первый исторически связан с удержанием нагретой электрическим разрядом плазмы в магнитном поле. Эти относительно «медленные» процессы (τ ~= 0,1÷1с) воспроизводятся, например, в широко известных установках, разработанных советскими учеными, типа ТОКАМАК.
Другой путь — это получение термоядерных микровзрывов (τ ~= 10-9 с) в сгустке термоядерной плазмы. Следовательно, получение термоядерных микровзрывов связано с необходимостью быстро нагревать и сжимать малые порции DT-вещества (импульсный или инерциальный процесс синтеза). Импульсное направление в проблеме УТС возникло в 1962 г., когда Н.Г.Басов и О. Н. Крохин высказали идею об использовании лазерного излучения для получения термоядерной плазмы. Это направление получило название лазерного термоядерного синтеза. Использование лазеров в УТС предопределяется возможностью фокусировки лазерного луча на площадку малых размеров (1∙10-2 см и меньше), высокой мощностью излучения, достигающей в настоящее время 1013—1014 Вт (10—100 ТВт). Такая высокая мощность лазерного излучения позволяет обеспечить колоссальное удельное энерговыделение (~ 1016—1017 Вт/см3). Столь высокое значение энергии в единичном объеме превосходит возможности других источников энергии и дает возможность осуществить мгновенный нагрев малых порций вещества до высоких температур и значительных давлений, так как давление всегда пропорционально тепловой энергии, приходящейся на единичный объем вещества.
Возникшая с появлением мощных лазеров физика УТС по мере развития лазерной техники (увеличения мощности и энергии когерентного излучения) накапливала все более и более удивительные открытия и быстро превращалась в совершенно новую область науки. Были открыты и изучены эффекты оптического пробоя (1964), лазерного испарения вещества и передачи механического импульса мишени (1964–1966), лазерного нагрева твердого вещества до высоких температур (1964–1966), обнаружены термоядерные реакции в плазме, образованной излучением мощного неодимового лазера (1968).