Юный техник, 2000 № 05
Юный техник, 2000 № 05 читать книгу онлайн
Популярный детский и юношеский журнал.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
ЭКОЛОГИЧЕСКУЮ КАТАСТРОФУ у французского побережья вследствие разлития нефти из аварийного танкера «Эрика» помогли предотвратить российские специалисты. Они предложили использовать д ля сбора нефти разработанный ими биосорбент, который в отличие от зарубежных работает эффективнее при низких температурах и без присутствия кислорода (скажем, не морском дне), обеспечивая быстрое разложение нефти не безвредные компоненты. Для очистки 1 т нефти необходимо всего 100 кг сорбента, в то время как американского аналога на это же надо около 1000 кг.
ДАЖЕ ШКОЛЬНИКАМ ИЗВЕСТНО: чтобы химическая реакция шла быстрее, надо при прочих равных условиях повысить поверхность соприкосновения реагирующих веществ. Попросту говоря, измельчить вступающие в реакцию вещества. С такой справки начала свой рассказ генеральный директор научно-производственной компании «Нанобиохим» Елена Михайловна Егорова.
В последние годы в науке и медицине успешно применяются ультрамалые металлические частицы наноразмеров (напомним, что приставка «нано» означает одну миллиардную долю). Как оказалось, наночастицы служат весьма эффективными катализаторами в химических и фотографических процессах, в фильтрах для очистки питьевой воды, при создании металлополимерных материалов…
Однако измельчить металл до наноразмеров не такая уж простая задача: обычные мельницы для этого не годятся — «помол» получается чересчур грубым. Вот тогда химики и призвали на помощь биологически активные вещества — растительные пигменты из группы флаваноидов, образующие специфические соединения с ионами металлов. То есть, говоря проще, химики решили не измельчать далее металлический порошок, а, напротив, получать наночастицы путем выращивания их из растворимых солей различных металлов — серебра, цинка, меди, железа…
При этом, как выяснилось, достигается не только научная, но и практическая польза. Скажем, когда в обычную водоэмульсионную краску добавили малую толику наночастиц серебра, она, кроме всего прочего, приобрела повышенную бактерицидную активность. Если покрасить ею стены и потолок в операционной, то стерильность помещения сохраняется в течение нескольких месяцев, а то и лет.
РАЦИОНАЛЬНЫЕ ХОЛОДИЛЬНИКИ. «Всем известно, как покупают пельмени, — говорит заведующий лабораторией скороморозильных аппаратов Всероссийского НИИ холодильной промышленности, член — корреспондент РИА Илья Ильич Судзиловский. — Прежде всего надо взять коробку, потрясти. Если в ответ раздастся характерный дробный стук, значит, все в порядке — пельмени хорошо проморожены, не испортились при хранении. Но мало кто знает, что достичь оптимальной проморозки изготовленных пельменей не такая простая задача».
Чтобы не только пельмени, но и ягоды, грибы, резаные овощи и фрукты равномерно и быстро промораживались, сотрудники института додумались соединить вместе холодильник и… барабан. Конечно, не музыкальный инструмент, а просто цилиндрическую решетчатую емкость, в которую засыпают продукты. Равномерно вращаясь, барабан обеспечивает не только качественное промораживание, но и так называемую галтовку — уплотнение поверхностного слоя для лучшей сохранности продукта. Здесь также разработаны аппараты для «закалки» мороженого, которое после такой обработки лучше хранится и дольше сохраняет свои вкусовые качества.
РАЗБЕРЕМСЯ НЕ ТОРОПЯСЬ
Какой ток лучше?
Еще в древности, за 600 лет до нашей эры, было замечено: потертый о шерсть кусок янтаря притягивает пушинки и другие легкие предметы. От греческого слова «электрон», означающего «янтарь», и был впоследствии образован термин «электричество». Ио заметное продвижение в изучении электрических явлений началось только в XVIII веке.
В 1752 году М. Ломоносов вместе с Риманом начат исследования атмосферного электричества (Риман погиб при этих опытах) и обосновали идею «громоотвода». Развитие электротехники шло по нарастающей, и уже к концу века появились гальванические источники, а в XIX столетии началась эра электрических машин постоянного тока. Целесообразность применения последнего стала очевидной после работ Яблочкова, Доливо-Добровольского и Теслы по созданию трансформаторов и многофазных систем — до того полвека царствовал ток постоянный, любимое детище американца Эдисона. Между ним и сербом Теслой разгорелась ожесточенная дискуссия.
Художник Ю.Сарафанов
Эдисон, выступая в конгрессе с перечнем достоинств своего любимца, ссылался также и на его большую гуманность — менее мучительную смерть жертвы электрического стула. В качестве рекламы своей компании Эдисон подключил к специальной, высокостабильной аккумуляторной батарее одну, тщательно изготовленную лампу накаливания и выставил ее на всеобщее обозрение. Она непрерывно горела десятки лет и вышла из строя уже после смерти изобретателя в 1931 году. Конкуренты днем и ночью бдительно контролировали ее свечение — малейший перерыв в работе (подмена, ремонт) грозил эдисоновской фирме огромными убытками и потерей престижа.
И тем не менее «победить» переменный ток — основу радио, телевидения не удалось, и ныне оба вида электроэнергии мирно соседствуют, дополняя друг друга: большая ее часть вырабатывается на переменном, а потребляется (до 80 %), наоборот, на постоянном токе (транспорт, электролиз, привод).
Почему же возникло такое различие в подходах. Машины постоянного тока имеют великолепные рабочие характеристики: благоприятные зависимости момента, оборотов от нагрузки, простую и плавную регулировку скорости, удобный пуск.
Именно это требуется для транспорта и мощного электропривода. Однако любой агрегат постоянного тока имеет один крупный и принципиальный недостаток, имя ему — коллектор. Так называют механический переключатель тока из изолированных друг от друга медных пластин, вращающихся вместе с якорем. Создавать двигатель постоянного тока, лишенный коллектора со щетками, нельзя, хотя изобретатели, недостаточно осведомленные в электротехнике, вот уже сто лет не перестают этим заниматься, уподобляясь «творцам» вечных двигателей.
Поэтому электроэнергия на ТЭС, ГЭС, АЭС вырабатывается с помощью бесколлекторных, в сотни мегаватт, машин переменного тока, который потом уже у потребителя при необходимости выпрямляют.
Другим недостатком постоянного тока является невозможность простого и экономного изменения его напряжения с помощью трансформаторов, как это делается в сетях переменного тока. Общая мощность этих многочисленных простых аппаратов в десятки раз больше, чем у генераторов всех электростанций. К примеру, в вашей квартире вы пользуетесь напряжением 220 В, а к Москве от волжских ГЭС приходит 500 000 В. И много трансформаторных ступенек надо преодолеть току, чтобы попасть в вашу лампочку.
Тем не менее до открытий Доливо-Добровольского и Теслы для транспорта, воленс-ноленс, использовался постоянный ток. Первая такая ЛЭП была построена в 1874 году русским инженером Ф. Пироцким и имела длину всего один километр. В 1882 году француз М. Депре осуществил передачу от динамо-машины примерно двух киловатт при напряжении 1500–2000 В на расстояние 57 км. Однако после появления переменного тока и трансформаторов для передачи энергии стал, понятно, использоваться исключительно переменный ток.
На рисунке 1 изображена обычная блок-схема такой передачи.
Здесь генераторы 1 на электростанции, вращаемые паровыми или гидравлическими турбинами Т, выдают электроэнергию напряжением порядка 15–20 кВ, которое повышается трансформатором 2 до 100–500 кВ с соответствующим уменьшением тока, затем по линии 3 оно попадает на понижающий трансформатор 4 и распределяется потребителям 5. Но по мере роста протяженности воздушных и кабельных сетей, увеличения передаваемой мощности проявились и негативные стороны таких простых передач. Индуктивность проводов существенно увеличивала падение напряжения в воздушных линиях, их максимальная мощность стала определяться пределами устойчивости синхронной работы генератора и двигателей потребителя; огромные зарядные (паразитные) токи снижали эффективность кабельных линий, в их изоляции росли диэлектрические потери.