-->

Посвящение в радиоэлектронику

На нашем литературном портале можно бесплатно читать книгу Посвящение в радиоэлектронику, Поляков Владимир "Цепеш"-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Посвящение в радиоэлектронику
Название: Посвящение в радиоэлектронику
Дата добавления: 15 январь 2020
Количество просмотров: 206
Читать онлайн

Посвящение в радиоэлектронику читать книгу онлайн

Посвящение в радиоэлектронику - читать бесплатно онлайн , автор Поляков Владимир "Цепеш"
Популярно рассказано об основных достижениях радиоэлектроники — от радиовещания и телевидения до сложных вычислительных комплексов и систем. На многочисленных примерах показана все возрастающая значимость радиоэлектроники в современном мире. Даны сведения о физических основах, принципах действия и устройстве радиоэлектронной аппаратуры и ее элементов. Для широкого круга радиолюбителей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 23 24 25 26 27 28 29 30 31 ... 100 ВПЕРЕД
Перейти на страницу:

Первый радиоприемник А. С. Попова.

Успешные опыты по радиосвязи проводились и за границей. Здесь надо упомянуть прежде всего талантливого итальянского инженера Г. Маркони, с огромной энергией внедрявшего достижения радиосвязи в практику. В 1897 году он получил в Великобритании патент на «способ сигнализации на расстоянии» и организовал компанию, в настоящее время носящую его имя. Обладая миллионными капиталами, компания развернула широкое производство радиотелеграфных аппаратов и приступила к осуществлению проекта трансокеанской связи между Европой и Америкой. В то же время на прошение А. С. Попова о выделении трехсот рублей на опыты царский морской министр наложил резолюцию: «На такую химеру денег отпускать не разрешаю!»

В процессе экспериментов была открыта возможность слухового приема на «телефонные трубки», как тогда называли обычные наушники. Дальность связи резко возросла, и все большее число людей проникались мыслью о широком практическом использовании нового изобретения.

«Не было бы счастья, да несчастье помогло», — говорит русская пословица. Ноябрьской ночью 1899 года в кромешной темноте, во время снежного шторма, не имея ни малейшей возможности определить свое местонахождение (радионавигационных приборов, разумеется, еще не было), новый, только что построенный броненосец «Генерал-адмирал Апраксин» оказался на камнях у пустынного острова Готланд в Финском заливе. Надо было срочно организовать спасательные работы, а для этого нужна связь. И А. С. Попов со своим постоянным помощником П. Н. Рыбкиным решили эту проблему. Одна станция была установлена на острове, другая — на материке, вблизи финского города Котка. Длина линии связи достигла 44 км! Связь бесперебойно действовала по апрель 1900 года, пока велись спасательные работы. А 6 февраля этого же года радио спасло жизнь 27 рыбакам, которые оказались в открытом море на льдине, оторвавшейся от берегового припая. Сейчас бы, как это случилось в январе 1987 года на Рижском заливе, вызвали спасательные вертолеты. В 1900 году их не было, но зато было радио! «Командиру «Ермака». Около Лавенсаари оторвало льдину с рыбаками. Окажите помощь» — вот текст радиограммы, принятой П. Н. Рыбкиным на острове Готланд. Ледокол «Ермак» немедленно вышел в море, разыскал льдину с рыбаками и спас людей. Так описывают первый случай, когда радио сохранило жизнь людям. С тех пор подобных случаев было множество. Спустя двенадцать лет только благодаря радио была спасена часть пассажиров печально известного океанского лайнера «Титаник».

Но пожалуй, пора отвлечься от истории радиотехники — она столь обширна и увлекательна, что ей следовало бы посвятить отдельную книгу, и пойдем дальше.

Распространение радиоволн над земной поверхностью

Рассмотрим, как же распространяются радиоволны электромагнитные волны длиной более долей миллиметра. В пустоте, в открытом космосе электромагнитная волна распространяется прямолинейно, причем направление вектора напряженности электрического поля E перпендикулярно направлению распространения c. Вектор магнитного поля Н также перпендикулярен вектору с и одновременно вектору Е. Все три вектора образуют правовинтовую систему. Если излучатель воли изотропный, т. с. всенаправленный, то и волны распространяются во все стороны от него. Бросьте камень в пруд. И вы увидите волны, расходящиеся правильными концентричными окружностями. Объяснить это явление можно тем, что скорость распространения волн на поверхности воды, так же как и радиоволн в открытом пространстве, одинакова во всех направлениях.

Посвящение в радиоэлектронику - _87.jpg_0

Структура электромагнитной волны.

Как обстоит дело в земных условиях? Здесь даже аналогию придумать трудно, ведь Земля имеет форму шара. Согласитесь, нелегко представить себе шарообразный пруд. Если бы не было атмосферы, радиоволны из любой точки распространялись бы по касательной к поверхности. Связь можно было бы осуществить только в пределах прямой видимости между мачтами антенн. Это расстояние не так уж и мало. Читатели, достаточно сведущие в геометрии, легко решат задачу о дальности прямой видимости между двумя возвышенными точками. Мы же просто приведем готовую формулу

Посвящение в радиоэлектронику - _86.jpg

где Rз — радиус Земли; h1 и h2 - высоты мачт антенн.

Как видим, дальность пропорциональна корню квадратному из высоты мачты антенны. Например, два человека среднего роста на идеальной сферической Земле видят друг друга на расстоянии 8 км.

Посвящение в радиоэлектронику - _88.jpg_0

Определение дальности прямой видимости.

Заметим, что они видят только головы друг друга, а туловище и ноги надежно скрыты за горизонтом! Идеальную сферическую поверхность можно найти только в море, и моряки отлично знают этот эффект: сначала из-за горизонта показываются только верхушки мачт встречного корабля, видимая их часть все увеличивается по мере сближения кораблей, и уже в последнюю очередь видны корпус и палубы.

Посвящение в радиоэлектронику - _89.jpg_0

Так появляется корабль из-за горизонта.

Мы сейчас упомянули о распространении электромагнитных волн оптического диапазона световых волнах. Ведь только благодаря световым волнам мы видим то, что мы видим. Почти так же, как световые, распространяются и более длинные инфракрасные волны и еще более длинные миллиметровые и сантиметровые волны. Но здесь необходимо сделать ряд оговорок. Атмосфера может сильно поглощать некоторые волны с определенными длинами. Действует уже знакомое нам явление резонанса. Молекулы газов атмосферы ведут себя в поле электромагнитной волны как электрические диполи. А если диполь настроен в резонанс с частотой воздействующей на него волны, то он начинает интенсивно возбуждаться. Атомы в молекуле приходят в колебательное движение, а энергия волны, естественно, расходуется на возбуждение этих колебаний. Кислород интенсивно поглощает излучение с длинами волн около 0,5 см, а водяной пар — 1,35 см. На более коротких, субмиллиметровых волнах находятся линии поглощения большинства атмосферных газов, и условия распространения этих волн весьма неблагоприятны. Зато для более длинных волн, сантиметровых, дециметровых и метровых, атмосфера практически прозрачна. Все эти диапазоны относят к ультракоротким волнам (УКВ). Даже сильный дождь поглощает лишь самые короткие сантиметровые волны, тогда как более длинные волны УКВ диапазона хорошо распространяются в любую погоду.

Посвящение в радиоэлектронику - _90.jpg_0

Поглощение сантиметровых и миллиметровых волн в атмосфере.

На Останкинской башне размещены антенны Московского телецентра. Ведь УКВ распространяются прямолинейно, а с высокой башни телевизионный передатчик, работающий в диапазоне УКВ, освещает большую территорию. Были проекты размещения телевизионных антенн и на аэростатах, и на самолетах. Вот на создание каких проектов вынуждает нас кривизна поверхности Земли. В последние годы проблему предлагают решить еще радикальнее — установить телевизионные передатчики на искусственных спутниках Земли. Собственно, передачи со спутников уже давно ведутся. Только для их приема нужны достаточно большие антенны и специальные приемники. Но теперь наступает новая эра — эра прямого телевизионного вещания со спутников, когда каждый телезритель, направив антенну в небо, сможет принимать телепередачи в любой точке страны. Здесь не лишне заметить, что впервые подняли антенну на воздушном шаре А.С. Попов и П.Н. Рыбкин!

1 ... 23 24 25 26 27 28 29 30 31 ... 100 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название