-->

Сверхзвуковые самолеты

На нашем литературном портале можно бесплатно читать книгу Сверхзвуковые самолеты, Цихош Эдмунд-- . Жанр: Технические науки / Транспорт и авиация. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Сверхзвуковые самолеты
Название: Сверхзвуковые самолеты
Дата добавления: 16 январь 2020
Количество просмотров: 300
Читать онлайн

Сверхзвуковые самолеты читать книгу онлайн

Сверхзвуковые самолеты - читать бесплатно онлайн , автор Цихош Эдмунд

В книге польского авиационного специалиста приведены основные летно-технические характеристики, фотографии, чертежи общих видов и компоновочных схем большинства современных отечественных и зарубежных сверхзвуковых самолетов. Кратко излагается история их разработки. Описывается оборудование различных типов сверхзвуковых самолетов и рассматриваются научно-технические проблемы, связанные с их созданием. Наиболее полное для настоящего времени справочное руководство по зарубежным и отечественным сверхзвуковым самолетам. Для конструкторов самолетов, студентов соответствующих специальностей вузов и лиц, интересующихся авиацией.

Прим. OCR: Первая появившаяся в СССР в открытой печати монография по сверхзвуковым самолетам. Охват и качество материала позволяют занимать этой книге одно из первых мест по упоминаниям в авиационной литературе по реактивным самолетам.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 23 24 25 26 27 28 29 30 31 ... 136 ВПЕРЕД
Перейти на страницу:

Однако клееные конструкции затруднительно применять в самолетах, скорость которых превышает М ~ 2, из-за существенного снижения прочности таких конструкций с ростом температуры.

Ввиду этого для создания самолета, например, ХВ-70 с крейсерской скоростью М = 3 оказалось необходимым применение новых материалов и технологии, а также соответствующего оборудования, поскольку в полете с такой скоростью планер подвергается воздействию высоких температур, неприемлемых для освоенных клеевых конструкций. Исследования показали, что воздухозаборник и передняя кромка крыла самолета нагреваются до 315-340°С, а остальные поверхности-до 200-230°С. Так как самолет предназначался для длительных полетов, то потребовалось применение материалов с высокими механическими характеристиками в этом диапазоне температур, а также устройств охлаждения и теплоизоляции отсеков оборудования, топливных баков и т.п.

70% массы планера самолета ХВ-70 составляют детали из нержавеющей стали, 17%-из конструкционной стали и 9,5%-из титана и сплавов никеля. По опубликованным данным, для постройки одного планера требуется 5420 кг титана; это значит, что масса планера самолета ХВ-70 достигала почти 57 т и составляла свыше 23% максимальной взлетной массы. Из нержавеющей стали в самолете ХВ-70 изготавливаются слоистые конструкции, из титана-элементы, подвергающиеся воздействию высоких температур (дестабилиза- тор, обшивка носовой части фюзеляжа и его хвостовой части в области двигательного отсека); титан пошел также на некоторые элементы других узлов планера. Слоистые конструкции (толщиной ~ 25 мм) выполнены из стальной фольги толщиной 0,15 мм (увеличение толщины фольги всего на 0,025 мм приводит к возрастанию массы планера почти на 1000 кг), которая соединяется с сотовым наполнителем путем пайки в атмосфере аргона. В качестве припоя использован сплав серебра с добавкой 7,3% меди и 0,2% лития.

Сверхзвуковые самолеты - pic_56.jpg

Рис. 1.40. Конструкция и расположение клееных элементов планера самолета «Валькирия» ХВ-70А.

Непрерывное возрастание требований к самолетам привело к тому, что уже в 60-х годах начали применяться, особенно при изготовлении крыла, моноблочные конструкции с монолитными панелями, при этом слоистые конструкции использовались при изготовлении управляющих поверхностей, крышек ниш и отсеков, стенок воздушных каналов двигателей, а иногда и обшивки фюзеляжа. Монолитные панели, часто довольно сложной формы, изготавливаются из одного куска материала. Такой подход позволяет выполнить важнейшую часть планера – обошивку крыла – как одно целое с элементами жесткости, без деталей крепления. При этом нередко оказывается возможным в зависимости от габаритов самолета изготовить крыло только из двух частей (нижней и верхней), дополнив их отдельными конструкциями носка и подвижных элементов. Кроме того, такая конструкция дает возможность выполнить обшивку с переменной толщиной как вдоль размаха, так и вдоль хорды. Возможность выбора формы продольных и поперечных сечений крыла в соответствии с распределением нагрузок позволяет оптимально использовать материал с точки зрения прочности.

Следовательно, крыло такой конструкции имеет ряд достоинств в сравнении, например, с клепаным. К основным из этих достоинств можно отнести: уменьшение массы вследствие уменьшения числа деталей и соединений, повышение прочности, высокое качество наружной поверхности, упрощение технологии сборки и сокращение подготовительных работ, увеличение производственных возможностей самолетостроительного предприятия и т.п.

В зависимости от принятой технологии монолитные панели изготавливаются путем штамповки, фрезерования, ковки либо прессования, причем это может быть конструкция как с постоянным, так и переменным сечением в любом направлении.

В настоящее время широкое распространение в самолетостроении нашел метод фрезерования. Поскольку изготовление жестких крупногабаритных деталей методом фрезерования часто требует применения уникального оборудования, то, кроме механического фрезерования, используется также и метод химического фрезерования (травления). Этот метод изготовления деталей основан на том, что определенная часть металла удаляется с намеченных участков поверхности заготовок погружением их в ванны с растворами, обладающими сильными коррозионными свойствами. Производительность химического фрезерования такая же, а иногда даже и выше, чем механического, а стоимость значительно ниже. Этот метод имеет еще и то дополнительное преимущество, что он позволяет получить такие конфигурации, которые недостижимы при других методах обработки.

В производственной практике используются травильные среды двух типов: кислотные и щелочные. Кислотные ванны вызывают межкристаллитную коррозию. Этот процесс очень производителен и находит применение прежде всего при обработке стальных материалов. Однако таким способом не удается изготовить детали с высокой размерной точностью ввиду трудности контроля скорости процесса травления. Кроме того, компоненты кислотных растворов относительно дороги. Щелочные растворы значительно дешевле, процесс травления в них также производителен (если он проводится при температуре 80-90°С), а скорость травления можно просто и довольно точно контролировать. С учетом меньших затрат на материалы чаще всего применяются растворы едкого натра.

Таким образом, технический прогресс в самолетостроении в 1950-1960-х гг. привел к освоению новых технологических методов изготовления и соединения частей планера, что не только значительно снизило собственную массу самолета, но и позволило повысить прочность планера, особенно усталостную. Предполагается, что уже в ближайшее время будет достигнут дальнейший прогресс в этой области, в частности, благодаря лучшему исследованию воздействий окружающей среды, совершенствованию расчетных методов, широкому применению средств повышения надежности и моноблочных конструкций и т.п., а также в связи с упомянутыми выше работами в области активного управления и увеличения числа управляемых степеней свободы самолета.

Более точное определение воздействий окружающей среды оказывает непосредственное влияние на определение параметров конструкции в том смысле, что уменьшает «степень незнания», которая вынужденно учитывается в расчетах в виде коэффициентов запаса. Это относится не только к новым исследованиям, но и к накоплению статистических данных, касающихся, в частности, знакопеременных нагрузок.

Благодаря прогрессу вычислительной техники стало возможным применение новых методов расчета (например, метод конечных элементов), учитывающих такие специфические характеристики материалов, как пластичность, анизотропия и т.д. Увеличение степени детализации расчетов оказалось важным средством, позволившим существенно продвинуться по пути оптимизации конструкции.

Концепция безопасных повреждений нашла применение в самолетостроении из-за заботы скорее о безопасности, чем об улучшении летных характеристик, однако уже сейчас она оказывает существенное влияние также и на массу самолета, а особенно на прочностную надежность планера. Эта концепция предусматривает расчет каждой силовой детали планера, исходя из предпосылки, что в детали могут существовать дефекты, возникшие во время ее изготовления и имеющие величину, равную пороговым значениям чувствительности обычно применяемых методов контроля. Следовательно, каждая деталь в условиях нормальной эксплуатации должна выдерживать переменные нагрузки без катастрофического роста дефектов и снижения прочности. До недавнего времени реализация этой концепции сводилась к местным усилениям конструкции. Предполагается, что дальнейший прогресс в этой области связан с более точным определением усталостного роста дефектов и учетом его в прочностных расчетах. Таким образом, оптимизация конструкции должна производиться с учетом коэффициента хрупкости материала так же, как это делалось ранее в отношении статической прочности, а теперь усталостной. Таким путем может быть повышена надежность конструкции планера и упрощена технология изготовления самолета.

1 ... 23 24 25 26 27 28 29 30 31 ... 136 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название