-->

Космос — землянам

На нашем литературном портале можно бесплатно читать книгу Космос — землянам, Береговой Георгий Тимофеевич-- . Жанр: Технические науки / Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Космос — землянам
Название: Космос — землянам
Дата добавления: 16 январь 2020
Количество просмотров: 309
Читать онлайн

Космос — землянам читать книгу онлайн

Космос — землянам - читать бесплатно онлайн , автор Береговой Георгий Тимофеевич

Дважды Герой Советского Союза, летчик-космонавт СССР, заслуженный летчик-испытатель, руководитель Центра подготовки космонавтов Г. Береговой рассказывает о том, зачем мы штурмуем космос, оправданы ли усилия на покорение космоса, что человечество получит от этих усилий.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 23 24 25 26 27 28 29 30 31 ... 45 ВПЕРЕД
Перейти на страницу:

Сейчас все большее распространение в технике получают системы волоконной оптики. Один из основных элементов этих систем — световод — тонкая стеклянная нить. Луч, войдя в один конец световода, как вода в трубе, распространяется внутри его, многократно отражаясь от его внутренних стенок, выходит из другого. Такую трубку-волокно можно буквально завязать в узел. С помощью световых, то есть весьма коротких электромагнитных волн, по световоду можно передавать гораздо больше информации, чем, скажем, посредством радиоволн. Световод толщиной в одну сотую миллиметра, как уверяют специалисты, вполне способен обеспечивать прохождение сразу 12 телевизионных программ или сотни тысяч телефонных переговоров. Если вместо обычных проводов на современном самолете применить стекловолоконные, это уменьшит в несколько раз вес радиосвязного оборудования. Словом, у волоконной оптики заманчивое будущее. Дело только за технологами — от них ждут подходящих стеклянных нитей. Но получить их непросто.

Качество световода зависит от точности соотношения между диаметрами стержня и оболочки, а также между их показателями преломления. Попадись на границе раздела неоднородности, превышающие по размеру длину волны света, — и хорошего световода не получится. Такое же нежелательное влияние оказывает и загрязнение стекла тяжелыми ионами, парами воды. Уберечься от этих «технологических врагов» в земных условиях чрезвычайно трудно. А вот в космосе справиться с ними проще. В невесомости легче удалить ненужные примеси при бесконтейнерной плавке и выравнивать диаметры за счет преобладающей роли сил поверхностного натяжения в расплаве стекла.

Надо сказать, что технология получения стекла очень сложна. По этой причине и космические эксперименты со стеклом пока еще довольно редки. В марте и декабре 1976 года при запуске советских высотных ракет впервые проделали опыты с плавкой стекла. Через два года на борту космического комплекса «Салют-6» — «Союз-29» — «Союз-31» летчик-космонавт ГДР З. Иен провел плавку специального оптического стекла, которая длилась 20 часов, на установке «Сплав-01». Исследования полученных образцов, по мнению технологов, принесли любопытные и ценные данные. Таковы первые шаги. И все же специалисты уверены, что в орбитальном литейном цехе удастся производить тонкие и очень длинные стеклянные нити, которые на Земле неизбежно разрываются от собственной тяжести, не успев затвердеть. Так что стеклопроводы длиной в сотни метров будут сугубо космической продукцией. Разумеется, это не придет само. Космос не слишком охотно открывает свои секреты. Вспомним хотя бы поучительную историю с попыткой получить на орбите идеальные шарики.

Начну с такого интересного явления: капля жидкости в невесомости свободно висит в пространстве, ни на что не опираясь, и при этом непременно принимает форму шара. Кстати, образуется не просто жидкий шар, а сверхточный. Под действием сил поверхностного натяжения его форма близка к абсолютной сфере. Например, по расчетам для капли расплавленного алюминия, находящейся на высоте 320 километров от Земли, отклонения от идеала составят какие-то десятимиллионные доли процента. Это в тысячи раз меньше, чем существующие допустимые нормы для шарикоподшипников.

Современные литейные формы и прокатные станы, штампы, режущие и шлифовальные инструменты не в состоянии сделать шарики так близко к абсолютной сфере, если, конечно, не идти на непомерные затраты времени и средств. Между тем отклонения от идеальной формы вызывают биения, особенно при высоких оборотах вращения. И они — одна из главных причин износа подшипников. Расчетная долговечность шариковых подшипников, скажем, трамвая, грузовых автомобилей, токарных, фрезерных и некоторых других станков не превышает 20 тысяч часов — приблизительно два года непрерывной работы. У стационарных молотилок в пять раз меньше, а в комбайнах и вовсе около полутора месяцев. Согласитесь, этого явно недостаточно. Неудивительно, что технологи в одном из первых своих экспериментов на орбите решили прежде всего попробовать выплавить идеальные шарики.

Казалось, все предельно ясно, и удача сама упадет в руки. Может быть, поэтому опыт решили не слишком усложнять — ведь и нужно-то было для начала лишь подтвердить столь очевидный принцип. Это был эксперимент «Сфера», который поручили провести космонавтам Б. Волынову и В. Жолобову на борту орбитальной станции «Салют-5».

В космос взяли заготовки из сплава Вуда, в который входят висмут, свинец, олово и кадмий. Он отличается низкой температурой плавления — чуть выше 60 градусов: удобное свойство — можно легко и быстро расплавить. И вот металл расплавили на борту станции. Поршнем его выдавливали из печи в лавсановый мешочек длиной около 30 сантиметров. Полагали, что жидкая масса, падая, успеет в таком пространстве оформиться и затвердеть, прежде чем прикоснется к стенке. И что же увидели, когда на Земле вскрыли мешок?

Перед обескураженными специалистами лежали совсем не шарики и даже не горошины, а бесформенные, хотя и округлые, кусочки металла. Их поверхность удручала еще больше: она вся была покрыта хаотически расположенными волокнами. «Какой-то еж-уродец», — прокомментировал В. Жолобов. Как показал анализ, внутренняя структура образца в результате переплава на орбите тоже сильно изменилась: нарушилось равномерное распределение компонентов по объему, образовались отличающиеся по составу иглообразные кристаллики и т. д. Попробовали в лаборатории подобрать условия плавки, при которых получились бы сходные структуры — ничего не вышло. Добавлю, что и в эксперименте «Универсальная печь», проведенном в совместном советско-американском полете «Союз» — «Аполлон», было обнаружено аналогичное ухудшение однородности сплава. Объяснения столь странному итогу космической плавки ученые пока не находят — нужны дальнейшие исследования. В общем, атака в лоб себя не оправдала, значит, нужна планомерная, упорная осада.

В конце концов, лично я не сомневаюсь в том, что космическое производство идеальных шариков будет налажено. Да еще каких — полых. О таких шариках, к примеру, для подшипников, на которых вращаются роторные винты вертолетов, давно мечтают авиационные инженеры. Сейчас полые шарики сваривают из двух половинок, но шов остается слабым местом. А если сделать их из сплошного куска металла, то подшипники станут в пять-восемь раз долговечнее. Так считает академик Б. Патон.

В принципе космическую технологию изготовления подобных шариков можно представить следующим образом. Внутрь жидкой капли металла под давлением впрыскивают газ. После ввода шприца отверстие затягивается, пузырь под действием сил поверхностного натяжения занимает центральное положение, образуя шар. Расплав затвердевает, и газ оказывается замурованным. Вот и готов полый шар. Он гораздо прочнее сплошного: под нагрузкой он упруго деформируется, форма и целостность его не нарушаются.

Расчеты показывают, что в космосе можно из жидких металлов выдувать не только небольшие пустотелые шарики, но и огромные тонкостенные оболочки. Да если дать в руки конструкторов такую возможность, то, наверное, строительство больших орбитальных станций будет выглядеть совсем не так, как это представляют сегодня.

Скажем, несколько оболочек, пока они еще жидкие, объединяют в подобие гигантской пены. Когда она затвердеет, то получится единое целое, без швов и стыковочных узлов. Отдельные ячейки останется лишь превратить в помещения станции, разместив в них соответствующее оборудование.

Накладывая пленки из жидких металлов на каркас любой конфигурации, можно изготавливать на орбите конструкции бесконечно разнообразных форм. Как знать, не они ли станут основой космической архитектуры будущего?

Однако давайте теперь, поговорив о «воздушных замках» из металлизированной пены, спустимся на Землю. Между прочим, здесь пеноматериалы уже давно не фантастика. Например, пенобетон. Его производят сейчас в значительных количествах и все шире используют в строительстве. Еще бы, он не уступает железобетону по прочности, но вдвое легче. Кроме того, пенобетон обладает высокими теплоизоляционными качествами. Вот вам подтверждение того, насколько необычными свойствами наделены твердые пористые материалы, даже когда у них далеко не идеальная внутренняя структура.

1 ... 23 24 25 26 27 28 29 30 31 ... 45 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название