Беседы о физике и технике
Беседы о физике и технике читать книгу онлайн
В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рис. 38. Отражение и преломление света на границе двух прозрачных сред
РАЗВЕ СТЕКЛО — НЕ ИДЕАЛЬНЫЙ МАТЕРИАЛ ДЛЯ СВЕТОВОДА?
При использовании первых стеклянных световодов возникали серьезные трудности, связанные с недостаточной прозрачностью стекла.
Действительно, стоит посмотреть в торец обычного оконного стекла, чтобы убедиться в его непрозрачности, обусловленной примесями малых количеств железа и меди в стекле.
В состав даже самых чистых стекол, изготовляемых для астрономических и фотографических объектов, всегда входят заметные количества окрашиваемых примесей.
ИТАК, СВЕТ ПОПАЛ В ВОЛНОВОД…
Излучение, распространяющееся по волноводу, удобно представлять в виде совокупности парциальных волн, называемых модами.
Каждая мода удовлетворяет уравнениям электродинамики, полученным Максвеллом, и некоторым граничным условиям, связанным с геометрией и оптическими характеристиками волновода.
В волноводе полное число мод
N = 2πS/λ2
где S — площадь поперечного сечения волновода, а λ — длина волны излучения.
Как следует из приведенного соотношения, с уменьшением λ число мод быстро возрастает, а для уменьшения этого числа можно воспользоваться двумя путями. Во-первых, создать такие условия, чтобы значительная часть мод быстро затухала с расстоянием. Во-вторых, использовать волноводы с малой площадью поперечного сечения S. Такие одномодовые волноводы в оптическом диапазоне должны иметь диаметр порядка микрометров. Второй путь представляется наиболее привлекательным, так как практика как раз требует использования волноводов с малым поперечным сечением.
Однако волноводы с малым поперечным сечением пропустят и небольшую световую мощность. Использование большого числа тонких волноводов, скомпонованных в многожильный жгут, решает проблему сохранения мощности излучения.
Мы остановимся подробнее лишь на одном типе волокон — диэлектрическом — как наиболее перспективном виде оптических волноводов.
ОХАРАКТЕРИЗУЙТЕ ДИЭЛЕКТРИЧЕСКИЕ ВОЛНОВОДЫ
Диэлектрические волноводы получили широкое распространение. Их выполняют в виде пленок, стержней, толстых и тонких нитей (волокон) из прозрачного диэлектрика. На рис. 39 показано оптическое волокно в разрезе.
Рис. 39. Оптическое волокно в разрезе
Здесь 1 — сердцевина волокна диаметром d1 и показателем преломления n1, 2 — оболочка волокна (наружный диаметр d2, показатель преломления n2). Сердцевину волокна обычно изготовляют из высокопреломляющих тяжелых флинтов, тогда как для оболочки используют легкие кроны.
Показатели преломления n1 и n2 должны удовлетворять условию
n1 > n2
Диаметр сердцевины может в широком интервале: от миллиметров до микрометров.
Направляющие свойства оптических волокон обусловлены, как мы уже установили ранее, полным отражением света от поверхности, разграничивающей сердцевину волокна и его оболочку.
Если d1 >> λ, то волокно называют толстым, а при d1 ~< λ — тонким.
Волокна могут быть собраны в жгуты, в которых содержится 106 и более отдельных волокон. При плотной упаковке волокон в жгуте возможно просачивание световой энергии из одного волокна в другое. Хотя этому препятствует оболочка волокна, но более надежно предохраняют от просачивания света наносимые на волокна специальные покрытия.
ЧЕМ РАСПРОСТРАНЕНИЕ СВЕТА В ТОЛСТОМ ВОЛОКНЕ ОТЛИЧАЕТСЯ ОТ РАСПРОСТРАНЕНИЯ СВЕТА В ТОНКОМ ВОЛОКНЕ?
Распространение света в толстом волокне подчиняется законам геометрической оптики. Для простоты будем рассматривать световые лучи, которые распространяются в диаметральных плоскостях, пересекая ось волокна (меридиональные лучи). На рис. 40 изображен один из меридиональных лучей, падающих на границу между сердцевиной и оболочкой волокна под предельным углом полного отражения α2. Угол α, под которым луч падает из внешней среды на торец волокна, носит название максимального угла падения входного луча.
Рис. 40. Распространение света в толстом волокне
Если I0 и I1 — интенсивности соответственно входящего и выходящего из волокна световых потоков, то Т = I1/I0 называют светопропусканием волокна. Оно зависит от ряда факторов: степени прозрачности сердцевины, волокна и оболочки, отражающей способности поверхности раздела сердцевины и оболочки, потерь отраженного света на торцах волокон. Результаты, полученные для светопропускания и других характеристик прямого волокна, оказываются справедливыми и для изогнутого волокна, если его радиус изгиба R удовлетворяет эмпирическому условию R/d1 > 60. Элемент, такого изогнутого световода представлен на рис. 41.
Рис. 41. Передача изображения в световоде
Исследуя распространение света в случае тонких волокон, уже необходимо использовать представления волновой оптики и рассматривать картину распространения по волокну различных мод. Для достаточно тонких волокон (d1 ~= λ) в соответствии с ранее приведенным выражением для N может быть реализован одномодовый режим. Условие осуществления одномодового режима может быть представлено в виде
Следовательно, для получения одномодового режима необходимо уменьшить не только диаметр волокна, но и разницу в показателях преломления сердцевины и оболочки.
Следует отметить существенное различие в распространении света в тонких и толстых волокнах. Так как при полном отражении интенсивность светового поля в среде с меньшей оптической плотностью не равна нулю и уменьшается по мере удаления от границы раздела, но в тонком волокне часть световой мощности распространяется не по сердцевине, а по оболочке. И в тонких волокнах в отличие от толстых доля световой мощности, распространяющейся в оболочке, весьма существенна.
Если в толстых волокнах светопропускание определялось прозрачностью в основном сердцевины волокна, то в тонких волокнах более важную роль играют свойства оболочки волокна.
ГДЕ ПРИМЕНЯЮТ ОПТИЧЕСКИЕ СВЕТОВОДЫ?
За короткое время, прошедшее после создания первых образцов световодов, проблема из научной перешла в техническую. Началась разработка световодных кабелей и аппаратуры (источников и приемников излучения и др.), которые удовлетворяли бы практическим целям передачи информации на значительные расстояния. Появились и так называемые активные волокна, способные усиливать проходящее через них излучение.
Как звуковая волна в переговорной трубке или трубе духового музыкального инструмента от источника его возникновения передается к слушателю, так и свет бежит по световоду, неся информацию либо в виде изображения тех или иных объектов, либо закодированную цифровую информацию.