-->

История электротехники

На нашем литературном портале можно бесплатно читать книгу История электротехники, Коллектив авторов-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
История электротехники
Название: История электротехники
Дата добавления: 15 январь 2020
Количество просмотров: 304
Читать онлайн

История электротехники читать книгу онлайн

История электротехники - читать бесплатно онлайн , автор Коллектив авторов
Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники. Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники. В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Для построения современных средств измерений с наиболее высокими метрологическими характеристиками, включая эталоны вольта и ампера, решающее значение имеет использование квантовых эффектов Б. Джозефсона и Холла.

Эффект Б. Джозефсона был предсказан в 1962 г. английским физиком Б. Джозефсоном и экспериментально обнаружен в 1963 г. американскими физиками П. Андерсоном и Дж. Роуэллом. Одно из проявлений данного эффекта состоит в следующем. При облучении контакта Б. Джозефсона — тонкого слоя диэлектрика между двумя сверхпроводниками — высокочастотным электромагнитным полем, на вольт-амперной характеристике такого контакта возникают скачки напряжения, пропорциональные частоте. Высокая точность воспроизведения скачков напряжения на контактах Б. Джозефсона позволила в 80-х годах построить эталоны вольта с погрешностями не более 0,0001%.

Использование эффекта Б. Джозефсона и явления квантования магнитного поля в односвязных сверхпроводниках привело к созданию чрезвычайно чувствительных сверхпроводящих квантовых интерференционных приборов — СКВИДов, измеряющих магнитные потоки. Применение измерительных преобразователей различных физических величин в магнитные потоки позволило создать на основе СКВИДов измерительные приборы и устройства различного назначения, обладающие рекордно высокой чувствительностью: гальванометры, компараторы, термометры, магнитометры, градиентометры, усилители. На основе эффекта Б. Джозефсона строятся и другие устройства, служащие для обработки измерительной информации, например, АЦП и цифровые процессоры сигналов с тактовыми частотами свыше 10 ГГц.

Квантовый эффект Холла был открыт в 1980 г. К. фон Клитцингом (ФРГ). Эффект наблюдается при низких температурах (около 1 К) и проявляется в виде горизонтального участка на графике зависимости холловского сопротивления полупроводниковых датчиков Холла от магнитной индукции. Погрешность сопротивления, соответствующего этому участку, не превышает 0,00001%. Это позволило использовать квантовый эффект Холла для создания эталонов электрического сопротивления.

Использование квантовых эффектов Б. Джозефсона и Холла позволило разработать эталоны постоянного электрического тока, превышающие по точности эталоны на основе токовых весов, применявшихся почти всю вторую половину XX в. В нашей стране новый государственный первичный эталон введен с 1992 г. Он воспроизводит ампер с погрешностью не более 0,00002% (токовые весы обеспечивали погрешность не более 0,0008%).

Рассмотренные эффекты проявляются при низких температурах, что служит главным препятствием для их широкого использования. Однако открытие в 1986 г. высокотемпературных сверхпроводников позволяет ожидать создания средств измерений, построенных на интегральных схемах и работающих при температурах около 100 К. Это был бы новый качественный скачок в развитии электроизмерительной техники.

СПИСОК ЛИТЕРАТУРЫ

12.1. Депре М. О гальванометре, показания которого пропорциональны силе тока // Электричество. 1884. № 24.

12.2. Шателен М. Счетчики электрической энергии // Электричество. 1893. № 20.

12.3. Жерар Эрик. Курс электричества. Т. 1. Санкт-Петербург, 1896.

12.4. Чернышев А. Методы измерений высоких напряжений и новый абсолютный высоковольтный вольтметр // Электричество. 1910. №15.

12.5. Ферингер А.Б. Новейшие измерительные приборы (обзор) // Электричество. 1912. №1.

12.6. Маликов М.Ф. Основные электрические единицы в их современном состоянии // Электричество. 1924. № 3.

12.7. Грун К. Электротехнические измерительные приборы. М.: Гостехиздат, 1927.

12.8. Банденбургер В.И. Электрические телеизмерения // Электричество. 1931. № 17.

12.9. Шумиловский Н.Н. Электрические счетчики: теория, расчет, конструирование. Л.: Кубуч, 1932.

12.10. Стекольников И.С. Катодный осциллограф для контактного фотографирования // Электричество. 1933. № 12.

12.11. Городецкий С.С. Измерения на высоком напряжении. М.-Л.: Энергоиздат, 1934.

12.12. Конструкции электроизмерительных приборов / Под ред. Н.Н. Пономарева. Л. — М.: Энергоиздат, 1935.

12.13. Кейнат Г. Электроизмерительная техника. Т. 1. Л.: Ленинградский индустриальный институт, 1935.

12.14. Кейкат Г. Электроизмерительная техника. Т.2. Л.: Ленинградский индустриальный институт, 1937.

12.15. Кузнецов Б.Г. История энергетической техники. М.: Гостехиздат, 1937.

12.16. Электрические и магнитные измерения / Под ред. Е.Г. Шрамкова. М.-Л.: ОНТИ, 1937.

12.17. Темников Ф.Е., Харченко P.P. Электрические измерения неэлектрических величин. М.-Л.: Госэнергоиздат, 1948.

12.18. Шкурин Г.П. Электроизмерительные приборы: Справочник-каталог М.: Машгиз, 1948.

12.19.Туричин A.M. Электрические измерения неэлектрических величин. М.-Л.: Госэнергоиздат, 1951.

12.20. Карандеев К.Б. Методы электрических измерений. М.-Л.: Госэнергоиздат, 1952.

12.21. Белькинд Л.Д., Конфедератов И.Я., ШнейбергЯ.А. История техники. М.: Госэнергоиздат, 1956.

12.22. История энергетической техники СССР. Т.2. Электротехника. М.: Госэнергоиздат, 1957.

12.23.Веселовский О.Н. Михаил Осипович Доливо-Добровольский. М.: Госэнергоиздат, 1958.

12.24. История энергетической техники / Л.Д. Белькинд, О.Н. Веселовский, И.Я. Конфедератов, Я.А. Шнейберг. М.: Госэнергоиздат, 1960.

12.25. Темников Ф.Е. Теория развертывающих систем. М.-Л.: Госэнергоиздат, 1963.

12.26.Веселовский О.Н., ШнейбергЯ.А. Энергетическая техника и ее развитие. М.: Высшая школа, 1976.

12.27.Стил Р. Принципы дельта-модуляции. М.: Связь, 1979.

12.28. Арутюнов В.О. Избранные труды в области электрических измерений, теории и прикладных вопросов метрологии. М.: Изд-во стандартов, 1979.

12.29. Бароне А., Патерно Д. Эффект Джозефсона: физика и применения. М.: Мир, 1984.

12.30. Сиберт У.М. Цепи, сигналы, системы. Ч. 1.М.:Мир, 1988.

12.31. Электроника: Энциклопедический словарь / Гл. ред. В.Г Колесников. М.: Сов. энциклопедия, 1991.

12.32. Волшебство аналоговой схемотехники // Электроника (русский перевод). 1993. № 11/12.

12.33. Уилер Р. Испытания и измерения за 40 лет // Электроника (русский перевод). 1993. № 11/12.

12.34. Веселовский О.Н., Шнейберг Я.А. Очерки по истории электротехники. М.: Изд-во МЭИ, 1993.

12.35.Герасимов В.Г., Орлов И.Н., Филиппов Л.И. От знаний — к творчеству. М.: Изд-во МЭИ, 1995.

Глава 13.

ПЕРСОНАЛИИ

13.1. КРАТКИЕ СВЕДЕНИЯ О РОССИЙСКИХ И ЗАРУБЕЖНЫХ УЧЕНЫХ, ВНЕСШИХ ЗНАЧИТЕЛЬНЫЙ ВКЛАД В РАЗВИТИЕ ЭЛЕКТРОТЕХНИКИ

Алексеев Александр Емельянович (1891–1975 гг.) — российский ученый, профессор, доктор технических наук, член-корреспондент АН СССР, заслуженный деятель науки РФ, лауреат государственных премий. Основное направление деятельности — разработка научных принципов конструирования электрических машин различного типа; руководил конструкторскими работами по созданию электросварочных агрегатов, затем разрабатывал конструкции первых отечественных турбо- и гидрогенераторов, в частности гидрогенераторов Волховской ГЭС; руководил разработками первых тяговых электродвигателей; занимался теоретическими и конструкторскими разработками перевода железных дорог с постоянного на переменный ток. А.Е. Алексеев обобщил вопросы конструирования, выбора вентиляционных схем, тепловых расчетов электрических машин общего назначения и тяговых электродвигателей в монографиях: «Конструкция электрических машин» и «Тяговые электродвигатели».

Ампер Андре Мари (1775–1836 гг.) — выдающийся французский ученый, основатель электродинамики. Родился в г. Лионе в семье аристократа, получил хорошее домашнее образование. Благодаря огромному трудолюбию стал одним из образованнейших людей своего времени. Его энциклопедические знания ярко проявились в физике и математике, астрономии и химии, зоологии и философии. Первую научную работу по математике он представил в Лионскую академию наук, когда ему было всего 13 лет. Первые открытия в области электромагнетизма в 1819–1820 гг. настолько увлекли A.M. Ампера, что уже весной 1820 г. он сделал первые шаги на пути создания электродинамики. В течение нескольких недель подряд он выступал на заседаниях Парижской академии наук, сообщая о своих исследованиях по взаимодействию токов и магнитов. Он впервые четко объяснил, что все явления магнетизма объясняются электрическими явлениями. A.M. Ампер придумал оригинальный «станок Ампера», наглядно иллюстрировавший взаимодействие проводников с током. Блестяще владея математикой, он вывел известный закон электродинамики, носящий его имя, а наблюдаемые явления предложил называть «электродинамическими» в отличие от электростатических. Все его теоретические и экспериментальные исследования были обобщены в известном труде «Теория электродинамических явлений, выведенная исключительно из опытов» (Париж, 1826–1827 гг.). A.M. Ампер впервые ввел в науку термин «электрический ток» и понятие о его направлении. Огромной заслугой A.M. Ампера является разработанная им теория «молекулярных токов»: магнетизм любой самой малой частицы обусловлен круговыми электрическими токами, расположенными в плоскостях, перпендикулярных к ее оси. Это был новый прогрессивный шаг в толковании природы магнитных явлений, отрицавший представление об особых «магнитных жидкостях». Научный вклад A.M. Ампера получил высочайшую оценку: в 1891 г. на Международном конгрессе электриков в Париже единица тока получила название «Ампер». Он был членом Парижской академии наук с 1834 г., избирался также членом многих академий мира, в том числе и Петербургской академии наук (1839 г.). Его по праву называли «Ньютоном электричества».

Перейти на страницу:
Комментариев (0)
название