История электротехники
История электротехники читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Первыми отечественными изоляторами, изготовляемыми методом протяжки при помощи вакуум-пресса, были модернизированные проходные изоляторы на напряжения 3, 6 и 10 кВ. При этом токоведущий стержень круглого сечения с резьбой на двух концах был заменен плоской шиной, закрепление на цементе двух чугунных колпачков было исключено, что сократило цикл армирования изоляторов. Проходные изоляторы описанной конструкции широко применяются в промышленности начиная с 1940 г.
Для разработки новых электрокерамических материалов и новой технологии и проектирования новых заводов в 1938–1939 гг. в Москве был организован Государственный исследовательский электрокерамический институт (ГИЭКИ).
Этот институт во время войны в 1941 г. был эвакуирован на Урал, где его немногочисленные сотрудники провели ряд важных работ по исследованию и применению уральского сырья в изоляторном производстве, что помогло развернуть работу по производству изоляторов на организованном заводе «Урализолятор» (г. Камышлов).
В 1939–1941 гг. ВЭИ совместно с заводом «Изолятор» разрабатывает маслонаполненный ввод на напряжение 400 кВ для трансформаторов Куйбышевской ГЭС. Эта работа была прервана начавшейся войной.
Дальнейшие интенсификация и совершенствование изоляторного производства развиваются по линии механизации и автоматизации процессов, внедрения высокопроизводительных станков-автоматов и перевода серийного производства на поточный метод.
Бурное развитие изоляторной промышленности происходит в послевоенный период. Осваивается производство линейных изоляторов с гарантированной прочностью 1∙105 и 1,57∙105 Н. Изоляторная промышленность осваивает выпуск новых типов изоляторов на напряжение 330, 400 и 500 кВ. В 1949 г. начинаются разработки и освоение производства высоковольтных вводов с бумажно-масляной изоляцией, позволившей значительно снизить их массу. В 1959–1960 гг. выпускаются вводы на напряжения 110, 150, 220, 330, 400 и 500 кВ для трансформаторов, установленных на Каховской ГЭС, линиях электропередачи Волгоград — Москва, Волгоград — Урал.
Таким образом, фарфор имеет чрезвычайно широкое применение в электротехнике. Однако он имеет и недостаток — большие диэлектрические потери, сильно возрастающие при повышении температуры, что затрудняет применение фарфора при высоких частотах и температурах.
Развитие радиоэлектронной промышленности вызвало необходимость в новых керамических материалах, обладающих повышенными свойствами. Развитие этих материалов сначала шло по линии усовершенствования фарфора, а затем по линии получения керамических материалов другого состава.
В 1937–1938 гг. Н.П. Богородицкий провел исследования электрокерамических материалов, способных работать в электрических полях высокой частоты, которые имели большое значение для производства радиофарфора и ультрафарфора. Из этих материалов на заводе «Пролетарий» начали изготовляться многие конструкции высокочастотных установочных изделий и радиоизоляторов.
Следует отметить разработку технологии получения отечественного стеатита в 1944–1945 гг. в ГИЭКИ и освоение производства стеатитовых изоляторов, отличающихся от фарфоровых лучшими механическими и диэлектрическими параметрами. Благодаря малым диэлектрическим потерям этот материал нашел широкое применение в высокочастотных установках.
Широкое использование в специальной и бытовой технике высокочастотных устройств приводит к разработке и освоению выпуска высоковольтных конденсаторов для высокочастотных генераторов. В 1945–1946 гг. впервые в СССР разрабатывается и начинается промышленный выпуск малогабаритных керамических конденсаторов типа ТБК и КВИ, которые позволили заменить слюдяные конденсаторы и значительно снизить стоимостные показатели СВЧ-генераторов. Применение керамических конденсаторов типов ТГК-1К, ТГК-1А, ТГК-2,5 и ПТК-2,5, разработанных в 1952 г., также позволило снизить стоимость генераторов примерно в 2 раза и уменьшить их габариты.
В этот же период расширялись и реконструировались действующие изоляторные заводы, строились новые предприятия. Изоляторный завод в г. Камышлове, Южно-Уральский арматурно-изоляторный завод, заводы «Электроконденсатор», «Комиэлектростеатит», Славянский изоляторный завод. В 60-х годах была пущена первая очередь Пермского завода высоковольтных изоляторов, построены завод в г. Великие Луки и завод «Электрофарфор» в г. Бендеры. Мощность отдельных заводов достигала 10–15 тыс. т электрофарфора в год. Заводы, как правило, специализировались на выпуске отдельных видов изоляторов. Производство линейных высоковольтных (подвесных и штыревых) изоляторов было сосредоточено на заводах им. Артема и Южно-Уральском, высоковольтных керамических конденсаторов — на заводе «Электроконденсатор». Завод «Пролетарий» выпускал в основном аппаратные изоляторы и вилитовые разрядники.
Промышленностью в 50–60-е годы был освоен выпуск изоляторов различного назначения из фарфора, стеатита, кордиерита, титановых и других материалов. В производстве стали использовать глиноземистый и тонкодисперсный высококварцевый фарфор. Механическая прочность изоляторов из этих материалов соответствовала мировым стандартам. В короткое время в промышленности освоены более совершенные конструкции проходных, подвесных и опорных изоляторов. Заводы отрасли перешли на производство подвесных изоляторов для подвески тяжелых проводов на линиях электропередачи напряжением 500 кВ, линейных подвесных высоковольтных изоляторов из стекла. В 1964 г. изготовлены вводы постоянного тока на напряжения 200 и 400 кВ для линии электропередачи Волгоград — Донбасс.
В 60–70-х годах разработаны вводы с твердой изоляцией на напряжения 110 и 220 кВ, что позволило уменьшить их габариты и массу; конструкции вводов с твердой изоляцией для трансформаторов на напряжения 330, 500 и 750 кВ; керамические конденсаторы для наружной и внутренней установки с номинальными емкостями от 300 до 4500 пФ на напряжения до 350 кВ; малогабаритные керамические конденсаторы КСК-3–5 емкостью 6000 пФ на напряжение 3 кВ. По своим характеристикам эти конденсаторы превзошли лучшие зарубежные образцы [10.21].
Ленинградский филиал ГИЭКИ разработал новую серию магнитно-вентильных разрядников на напряжения 3–10 и 110–500 кВ с высокими эксплуатационными характеристиками. Здесь же разработана новая серия высокопрочных опорных изоляторов с механической прочностью до 2∙104 Н∙кг, позволяющая в 2–3 раза снизить массу разъединителей на напряжения 220, 330, 500 и 750 кВ.
В настоящее время продолжают совершенствоваться конструкции фарфоровых изоляторов и повышается их рабочее напряжение. Так, например, заводом «Изолятор» в последнее время разработаны вводы на очень высокие напряжения (500, 750 кВ и выше).
10.4. МАГНИТНЫЕ МАТЕРИАЛЫ В ЭЛЕКТРОПРОМЫШЛЕННОСТИ
История современных магнитных материалов начинается с одного из практических применений переменного электрического тока — изобретения телефона. При увеличении дальности телефонной связи изучались возможности ограничения увеличивающегося затухания телефонных токов. В 1893 г. О. Хевисайд (Англия) предложил использовать индуктивные катушки с сердечниками из мелких стальных опилок и воска, которые должны были ограничить растущее затухание на телефонной линии. К 1900 г. сформулировались основные требования к магнитомягким материалам для техники связи: малые потери, малое искажение передаваемых токов и напряжений, высокая магнитная проницаемость.
С появлением асинхронных машин и развитием однофазной и многофазной систем переменного тока требования к магнитным материалам еще более возросли. От них стали требовать больших значений магнитной индукции насыщения, малых потерь энергии на гистерезис и вихревые токи и меньшего старения, чем у использовавшейся в то время низкоуглеродистой стали.
Первым материалом с высокой магнитной проницаемостью было железо, которое в зависимости от получаемой в то время чистоты имело начальную проницаемость 200–300. Около 1900 г. был достигнут значительный прогресс в разработке листовых электротехнических материалов, в которых благодаря присадке кремния удалось существенно снизить потери на гистерезис и вихревые токи в области высоких магнитных индукций. Однако при работе на начальном участке кривой намагничивания эти материалы дают лишь некоторое снижение потерь энергии на вихревые токи, в то время как наиболее важный в данном случае параметр — начальная магнитная проницаемость остается практически на том же самом низком уровне [10.22].