История электротехники
История электротехники читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
А. Бакеланд и О. Лебах, развивая исследования своих предшественников, независимо друг от друга установили, что реакция фенола с формальдегидом может быть проведена и так, что получаются продукты реакции в растворимой и плавкой форме. В связи с тем, что реакция фенола с формальдегидом протекает с большим выделением теплоты, они предложили при развитии экзотермического процесса отводить ее, это и позволило остановить процесс конденсации на такой стадии, когда смола находится в растворимой форме. Ученые показали, что процесс конденсации фенола с формальдегидом может быть управляемым. Эти работы послужили основой для создания промышленного способа получения синтетических высокомолекулярных соединений из простых низкомолекулярных веществ. А. Бакеланд опубликовал свои исследования в 1908–1910 гг.
В 1904 г. A.M. Настюковым была открыта реакция конденсации нефти с формальдегидом, в результате которой получены неоформолитовые смолы. Исследования Е.И. Орлова (1910 г.) обогатили изоляционную технику новым пластическим материалом, названным карболитом, который был получен в результате конденсации фенолов с формальдегидом. В 1912 г. Г.С. Петровым были открыты каталитические свойства сульфонафтеновой кислоты при конденсации фенола с формальдегидом.
Организация производства фенольно-формальдегидных смол в 1915 г. явилась началом развития промышленности пластических масс в России. Особенно большое значение эти смолы имели для электротехники. Они явились новым интересным материалом, который превосходил по своим свойствам все известные до того времени натуральные и искусственные полимеры. В них гармонично представлено сочетание различных технически ценных свойств, характерных для твердого каучука, эбонита, кости и дерева. Важным преимуществом фенольно-формальдегидных смол по сравнению с известными в то время натуральными и искусственными полимерами являлись их высокие технологичность и нагревостойкость. Сочетание комплекса технически ценных свойств и сравнительно высоких электроизоляционных характеристик обеспечило на основе этих смол широкое развитие производства диэлектриков.
В результате конденсации формальдегида с фенолом, крезолами и ксиленолами промышленность получает различные смолы для производства пластических масс и слоистых диэлектриков и удовлетворяет разнообразные требования электротехники.
Исследовательские работы, проведенные в лабораториях СССР, США и Англии по синтезу полиэфирных смол с непредельными группами (акриловыми, матакриловыми, малеиновыми), показали способность этих полимеров переходить в неплавкое и нерастворимое состояние за счет двойных связей без применения давления. Это весьма важное свойство позволяет широко использовать эти продукты для изготовления с применением малых давлений слоистых диэлектриков: гетинакса, текстолита, стеклотекстолита. Кроме того, способность этих смол отвердевать в толстом слое при отсутствии кислорода дает возможность использовать их для изоляции трансформаторов тока. В этом случае совершенно по-новому решается конструкция трансформаторов тока. Полиэфир образует основу изоляции трансформаторов тока различных напряжений (3–35 кВ и выше) и одновременно выполняет функцию корпуса трансформатора. Появление полиэфирных и эпоксидных смол позволило создавать монолитную изоляцию трансформаторов и различных блоков питания, отказавшись от герметизации обмоток при помощи применявшегося ранее метода помещения обмотки в металлический корпус.
По мере развития электротехники номенклатура полиэфирных смол резко увеличивается.
Начиная с 30-х годов большое значение приобрели полимеры, полученные методом полимеризации (полистирол, поливинилхлорид, поливинилацетат, полиметилметакрилат и др.). 40-е годы характеризуются получением поли конденсационных полимеров: кремнийорганических, полиамидных, полиуретановых.
В 1940 г. начинается производство полиэтилена при давлении до 250 МПа — одного из наиболее распространенных в настоящее время полимеров. В 1955 г. К. Циглером (Россия) был разработан метод полимеризации этилена и при низком давлении, который в настоящее время получил весьма широкое распространение.
Вслед за этим на основе работ итальянского ученого В. Натта был разработан технологический процесс получения полипропилена.
Начиная с 50-х годов промышленностью выпускаются новые электроизоляционные материалы: стеклопластмассы, стеклолакоткани, синтетические лакоткани, стеклотканиты, фольгированные и асбестовые слоистые материалы, слюдопласты, материалы на основе кремнийорганических, эпоксидно-фенольных и эпоксидно-полиэфирных связующих и др.
Бурное развитие электротехнической промышленности, а в связи с этим и повышение рабочих напряжений оборудования потребовали проведения глубоких теоретических и экспериментальных исследований. Для этих целей на предприятиях, выпускающих электроизоляционные материалы, открылись специальные лаборатории.
Важную роль в разработке и изготовлении электроизоляционных материалов и в освобождении нашей страны от иностранной зависимости сыграли организованные Государственный экспериментальный электротехнический институт, затем переименованный во Всесоюзный электротехнический институт (ВЭИ), Всесоюзный научно-исследовательский институт электромеханики (ВНИИЭМ), Всесоюзный научно-исследовательский институт кабельной промышленности (ВНИИКП), СКБ синтетической изоляции, Всесоюзный научно-исследовательский институт стекловолокна (ВНИИстекловолокна), Всесоюзный научно-исследовательский институт бумаги (ВНИИБ), научно-исследовательские институты химической промышленности и Академии наук СССР, лаборатории заводов «Электроизолит», «Изолит», «Электросила», «Динамо» и др. [10.5, 10.6].
В исследованиях ВЭИ тех лет закладывались основы важнейших для электротехники научных направлений. Под руководством П.А. Флоренского проводились исследования электрофизических свойств электроизоляционных материалов. В 1924 г. П.А. Флоренским была издана монография «Диэлектрики и их техническое применение», в которой были обобщены материалы по изучению диэлектриков.
В ВЭИ проводились исследования, связанные с синтезом различных полимеров: полиэфиров, полиуретанов, эпоксидных, фенолформальдегидных и карбамидных смол, поливинилацеталей, полиамидов, полиорганосилоксанов, полиорганометаллосилоксанов и др. В ВЭИ и ряде других организаций (ВНИИЭМ, ВНИИКП) разрабатывались различные электроизоляционные лаки, компаунды и материалы на основе новых полимеров.
Особого внимания заслуживают работы по изысканию новых путей синтеза полимерных кремнийорганических соединений, связанных с фундаментальными исследованиями механизма образования этих соединений. Эти теоретические исследования были начаты в ВЭИ под руководством К.А. Андрианова в 1935 г. В то время в мире еще не были известны высокополимерные соединения, содержащие молекулы, построенные из силоксанных группировок атомов и обладающие хорошими технологическими свойствами (гибкостью, растворимостью, способностью полимеризоваться и т.д.), характерными для органических смол.
Развитие электроизоляционных материалов и электроизоляционной техники можно условно разбить на несколько этапов.
Первым этапом (1920–1928 гг.), способствовавшим развитию электроизоляционной техники, явились систематические электрофизические исследования диэлектриков, которые были начаты в лабораториях Ленинградского физико-технического института.
Руководителем института А.Ф. Иоффе было открыто явление высоковольтной поляризации, имеющее большое значение для понимания процессов, происходящих в изоляции электрооборудования. Сотрудники этого института Н.Н. Семенов и В.В. Фок создали оригинальные теории пробоя диэлектриков. Тогда же, в конце 30-х годов, проводили испытания природы диэлектрических потерь, электропроводности при больших напряженностях электрического поля И.В. Курчатов и А.П. Александров. Эти исследования, положившие начало новой науке — физике диэлектриков, заслужили самую высокую оценку как в нашей стране, так и за рубежом. В дальнейшем работы в области физики диэлектриков были продолжены в Физическом институте АН СССР, в Томском и Ленинградском политехнических институтах, в ВЭИ, МЭИ, а также заводских лабораториях крупных электротехнических заводов (ХЭМЗ, «Электросила», «Динамо», Московский электрозавод и др.). Несколько позднее (в 30-е годы) получила развитие химия диэлектриков.