-->

Основы композиции. Учебное пособие

На нашем литературном портале можно бесплатно читать книгу Основы композиции. Учебное пособие, Голубева Ольга Леонидовна-- . Жанр: Технические науки / Искусство и Дизайн. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Основы композиции. Учебное пособие
Название: Основы композиции. Учебное пособие
Дата добавления: 16 январь 2020
Количество просмотров: 394
Читать онлайн

Основы композиции. Учебное пособие читать книгу онлайн

Основы композиции. Учебное пособие - читать бесплатно онлайн , автор Голубева Ольга Леонидовна

В книге системно изложены теоретические основы композиции, а также впервые предложена методика практического обучения ее основам. Издание содержит более 100 иллюстраций. Книга будет полезна всем, кто занимается творческой деятельностью в области изобразительного искусства, а также тем, кто обучается в различных художественных заведениях.

Допущено Министерством образования Российской Федерации в качестве учебника для студентов образовательных учреждений высшего и среднего художественного образования, изучающих курс «Основы композиции»

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 14 15 16 17 18 19 20 21 22 ... 27 ВПЕРЕД
Перейти на страницу:

Мультипликативность означает, что в числовом ряду Ф1 , Ф2 , Ф3 , Ф4 … Фn-1, Фn все члены ряда связаны в геометрическую прогрессию: Ф1 : Ф2 = Ф2 : Ф3 = Ф3 : Ф4 =…= Фn-1 : Фn = const.

Число золотого сечения, соединяющее свойства аддитивности и мультипликативности, находится как общий корень двух уравнений:

а + b = с (аддитивность)

а : b = b : с (мультипликативность),

в которых целое «с» представлено состоящим из двух частей а + Ь. Отношение золотого сечения – широко распространенная закономерность организации живой природы, которая за единством аддитивности и мультипликативности скрывает глобальный принцип построения мироздания.

Понятие аддитивности свидетельствует о том, что целое структурно… Понятие мультипликативности означает, что на все части структурно организованного целого распространяется одна и та же закономерность роста.

Например, в природе золотое сечение распространено очень широко – как числовая характеристика членения стеблей растений, их расположения на стволе, закручивания спиралей подсолнечника, описание пропорций человеческого тела, строения раковины, яйца, яблока и т. д.

Основы композиции. Учебное пособие - pic_147.jpg

Поликлет. Дорифор. V в. до н. э.

Певучесть скрипки, красота ее голоса находится в прямой зависимости от того, в какой мере форма инструмента согласована с пропорцией золотого сечения. Анализ музыкальных произведений в диапазоне от Баха до Шостаковича продемонстрировал метрические отношения основных разделов музыкальных форм, а также золотое сечение. Таким образом, законы гармонии обнаруясены в музыкальных рядах, в таблице Менделеева, в расстояниях между планетами, в микро- и макрокосмосе, во многих областях науки. Скульптура, архитектура, астрономия, биология, техника, психология и т. д. – везде так или иначе проявляет себя золотое сечение.

Обратимся к истории. Теперь нам точно известно, что автор одиннадцати деревянных досок – панелей из склепа древнеегипетского зодчего Хеси-Ра (XVIII в. до н. э., Древнее царство) – виртуозно применял не только законы золотого сечения, но и был знаком с общекосмическим феноменом гармонии. Он также проиллюстрировал правило золотого сечения во всевозможных вариациях и дал практические советы по его использованию в творчестве.

Сегодня невозможно с абсолютной достоверностью определить, когда и как понятие золотого сечения было выделено человеком из интуитивной и опытной категории.

Рассмотрим скульптуру Поликлета «Дорифор», вплоть до мельчайших деталей построенную в пропорции золотого сечения. Канон Поликлета был известен еще в Древнем Египте. Именно там его познал Пифагор, а затем передал свои знания ученикам. Как известно, Поликлет был выходцем из школы Пифагора. Судя по всему, Поликлет не был посвящен во все таинства канона. Приняв систему членения только как описывающую физические, внешние данные человека, он допустил ошибку. В результате голова его скульптур несколько массивна, тяжеловесна. Позднее Лисипп пересмотрел ограничения канона и более творчески подошел к нему.

Из всего ряда древних канонов, включая современный канон Ле Корбюзье, только канон древних египтян носит абстрактный характер: в нем нет человеческого изображения. Однако в нем закодированы ритмы мужского и женского тела. Поисками канона, дающего гармонию, занимались многие художники, скульпторы, архитекторы. Они создавали так называемые «модулёры», в основу которых были заложены найденные ими системы пропорционирования.

Основы композиции. Учебное пособие - pic_148.jpg

Доска-панель из склепа Хеси-Ра. Древнее царство. XVIII в. до н. э. 1*

Остановимся на достижении XX века – «модулёре» Ле Корбюзье, созданном для применения как в плоскостных композициях (в том числе, в графических работах), так и для создания объемных и объемно-пространственных композиций. Ле Корбюзье так определил для себя необходимость решения этой проблемы: «Если бы инструмент для линейных и оптических измерений, подобный музыкальной записи, был бы найден, то насколько легче было бы работать в архитектуре!

В современном машинизированном обществе, где оборудование с каждым днем совершенствуется для блага человека, создание гаммы визуальных измерений вполне уместно. Новый инструмент пропорционирования архитектурных форм явится основным средством объединения и сочетания человеческого труда, разобщенного – я бы сказал, разорванного – в наши дни двух трудно примиримых между собой систем: англосаксонской фут-дюйм, с одной стороны, и метрической с другой» 2*.

Ле Корбюзье не удовлетворился разновидностью системы Фибоначчи и сформулировал характеристику своего «модулёра»: «Модулёр – мерило, основанное на сочетании математики и человеческого масштаба; оно состоит из двух рядов числовых величин – красного и синего ряда. Можно ли ограничиться одной только числовой таблицей? Нет.

И мне вновь хочется пояснить весь комплекс идей, положенных

в основу изобретения. Метр – это всего только условная, абстрактная величина; сантиметр, дециметр, метр – это всего только наименования, принятые в десятичной системе… Числовые величины модулёра – это размеры конкретные, обладающие материальностью, они представляют собой результат выбора из бесконечного множества величин. Эти меры – величины числовые и обладают всеми свойствами чисел…» «…Сущность изобретения была выражена с редкой простотой: «модулёр» – это средство измерения, основой которого являются рост человека и математика. Человек с поднятой рукой дает нам точки, определяющие занятое пространство – нога, солнечное сплетение, голова, кончик пальцев поднятой руки – три интервала, обуславливающие серию золотого сечения, называемую рядом Фибоначчи. С другой стороны, математика предлагает здесь некоторое изменение, очень простое и в то же время весьма существенное: простой квадрат, удвоение и два золотых сечения. Сочетания, полученные в результате использования «модулёра», оказались беспредельными» 3*.

Модулёр выдержал довольно длительный срок проверки и был оценен положительно во всем мире. Архитекторы повсюду признали, что это не загадка, а инструмент, который можно вложить в руки тем, кто конструирует формы для простой цели.

1* Шевелев И. III., Марутаев M. А., Шмелев И. П. Золотое сечение. М., 1990. С. 326

2* Ле Корбюзье. Архитектура XX века. M., 1970. С. 234.

3* Ле Корбюзье. Архитектура XX века. М.; 1970. С. 250.

Основы композиции. Учебное пособие - pic_149.jpg

Ле Корбюзье. Модулёр. 1947

Вот вкратце основные позиции модулёра:

«1. Наша решетка дает три размера: 113, 70, 43 (в сантиметрах), которые согласуются с Ф (золотое сечение) и рядом Фибоначчи: 43 + 70 = 113 или 113 – 70 = 43. В сумме они дают: 113 + 70 = 183, 113 + 70 + 43 = 226.

2. Эти три размера – 113, 183, 226 – определяют величину пространства, занимаемого человеком шести футов.

3. Размер 113 определяет золотое сечение 70, показывая начало первой, красной, серии 4 – 6 – 10 – 16 – 27 – 43 – 70 – 113 – 183 – 226 и т. д… До сих пор стоящий человек служил определению трех, а не четырех решающих значений модулёра, а именно:

113 – солнечное сплетение;

182 – вершина головы;

226 – конец пальцев поднятой руки.

Второе отношение Ф, 140 – 86, вводит четвертую существенную точку фигуры человека – точку опоры опущенной руки: 86 сантиметров. Таким образом, если человек, у которого левая рука поднята, непринужденно опустит правую руку, то она даст отметку 86. В результате мы получаем четыре точки, определяющие с помощью фигуры человека занимаемое им пространство. Размер 226 (2 х 113 – удвоение) определяет золотое сечение 140 – 86, показывая начало второй, голубой, серии: 13 – 20,3 – 33 – 53 – 86 – 140 – 226 – 366 – 592 и т. д.

1 ... 14 15 16 17 18 19 20 21 22 ... 27 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название