-->

Баллистическая теория Ритца и картина мироздания

На нашем литературном портале можно бесплатно читать книгу Баллистическая теория Ритца и картина мироздания, Семиков Сергей Александрович-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Баллистическая теория Ритца и картина мироздания
Название: Баллистическая теория Ритца и картина мироздания
Дата добавления: 16 январь 2020
Количество просмотров: 188
Читать онлайн

Баллистическая теория Ритца и картина мироздания читать книгу онлайн

Баллистическая теория Ритца и картина мироздания - читать бесплатно онлайн , автор Семиков Сергей Александрович

Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Стоит отметить, что классическая теория переходов ферромагнетик-парамагнетик была построена Пьером Вейссом и Пьером Кюри [50], чему предшествовало создание Кюри теории кристаллов и кристаллизации (фазового перехода первого рода), а, также, — важной для этих процессов теории симметрии [156, 164]. Однако, Кюри умер в 1906 г. и теперь теорию такого рода фазовых переходов, основанную на теории симметрии, чаще связывают с именем Л.Д. Ландау, по сути укравшего и извратившего на кванторелятивистской основе идеи Кюри. Подобное не раз происходило и с идеями Ритца. Сейчас можно только пожалеть о ранней кончине В. Ритца и П. Кюри. Оба исследовали с разных сторон один и тот же вопрос и были близки к разгадке тайн строения вещества. Если Ритц построил магнитокристаллическую модель атома, то Кюри установил связь кристаллов и магнетизма. Проживи они оба чуть подольше и объедини свои усилия, люди ещё сто лет назад могли бы получить в руки адекватную теорию атома и ядра, а, вместе с ними, и полностью классическую картину мироздания. Итак, магнетизм, в целом, и ферромагнетизм, в частности, — вполне объяснимы в рамках классических законов. Более того, именно классическая теория атома, основанная на модели Ритца, позволяет понять, почему одни материалы и элементы обладают свойствами ферромагнетиков и антиферромагнетиков, а другие — нет (§ 3.3, § 3.19).

§ 4.2 °Cверхтекучесть

Эта жидкость кажется невесомой, почти несуществующей. А может, и нет её вовсе — жидкости?

Г. Камерлинг-Оннес о сверхтекучем гелии [61]

Ещё одно необычное и до сих пор не объяснённое свойство вещества — это сверхтекучесть, наблюдавшаяся пока только у гелия. Символично, что это чудо физики низких температур открыто в нашей стране, славной своими морозами. Ещё символичней, что открыл его в 1938 г. не физик-теоретик, а физик-экспериментатор, практик, инженер — Пётр Леонидович Капица, выпускник политеха Санкт-Петербурга [62]. Ведь квантовая теория не то что предсказать, но, даже, объяснить толком сверхтекучесть так и не смогла, равно как и сверхпроводимость. В этом основная причина ограниченного применения того и другого в жизни и технике. Всеми успехами по открытию сверхтекучести, сверхпроводимости, созданию всё более высокотемпературных сверхпроводников мы обязаны только экспериментаторам, интуитивно, случайно, вслепую нащупывающим соединения и сплавы с нужными свойствами. Роль теории в этих поисках ничтожна и сведена к объяснению (формально подогнанному) уже открытого. Поэтому, как многие отмечают, квантовая теория сверхтекучести и сверхпроводимости не оправдала себя. И жизненно необходима принципиально новая теория этих явлений, отличная от квантовой.

Итак, гелий. Как известно, этот инертный газ — самый упрямый из всех газов. Его атомы ни в какую не хотят сцепляться ни друг с другом, ни с атомами других элементов. Упорное нежелание атомов гелия взаимодействовать объясняет, почему этот газ последним сдал свои позиции и поддался сжижению (гелий обладает самой низкой критической температурой T К=5,25 К). Но и в жидком состоянии он сохранил своё упрямство, став единственным веществом, которое даже при абсолютном нуле не затвердевает (лишь под давлением в 25 атмосфер удаётся получить твёрдый гелий). Именно в этом запредельном состоянии, — ниже температуры Т=2,17 К, гелий обретает удивительное свойство сверхтекучести, иначе говоря, теряет вязкость и, даже сквозь тончайшие капилляры, течёт практически без трения.

Сверхтекучесть часто сравнивают со сверхпроводимостью, тоже наступающей возле точки абсолютного нуля [71, 134]. Ведь рождающие ток электроны снуют внутри металла, словно атомы газа. Потому и стали говорить о токе, течении "электронного газа". Его вязким трением, когда тот "сочится" сквозь поры кристалла, и объясняли прежде сопротивление проводников (§ 4.17). Ещё Ом ввёл наглядную гидродинамическую аналогию тока: проводник — это трубопровод; сила тока — расход жидкости (газа); разность потенциалов — разница давлений; сопротивление проводника — сопротивление трубопровода; выделение джоулева тепла — нагрев от вязкости жидкости (или газа) и т. д. А в сверхпроводнике вязкое трение электронного газа, как у гелия, исчезает, и он протекает по проводнику без сопротивления и потерь энергии.

Плодотворность классической модели тока делает её полезной и в настоящее время. Именно она вскрывает связь явлений сверхпроводимости и сверхтекучести, а, значит, — их природу. Правда, в проводнике говорят об электронном газе, тогда как сверхтекучий гелий считают жидкостью. Но вот с этим-то можно поспорить. Всё свидетельствует о том, что сверхтекучий гелий — это, в действительности, тоже газ, и аналогия с электронным газом полная.

Начать с того, что у всех газов с падением температуры Tвязкость η, в отличие от жидкостей, не растёт, а убывает по закону η~ T 1/2. Именно с этим когда-то связывали температурный рост сопротивления металлов: с повышением температуры росла вязкость электронного газа (Рис. 177). Как легко видеть, эта теория предсказывала и полное исчезновение сопротивления возле точки абсолютного нуля, при T=0 К. Поэтому, естественно допустить, что и гелий при охлаждении ниже критической температуры 2,17 К переходит в сверхтекучее состояние, за счёт превращения в газ, обладающий в таких условиях почти нулевой вязкостью η. И точно, опыт Э.Н. Андроникашвили показал, что при падении температуры вязкость сверхтекучего гелия снижается по закону η~ T 1/2, вплоть до нуля при T=0 К [134]. Но этот опыт почему-то истолковали как подтверждение абсурдной двухжидкостной модели Гинзбурга-Ландау, по которой гелий состоит из нормальной и сверхтекучей компонент: доля последней нарастает при охлаждении, достигая 100 % при абсолютном нуле, что якобы и объясняет нулевую вязкость. На деле же наблюдалось лишь классическое и давно предсказанное падение вязкости газообразного гелия.

Казалось бы, с чего бы это жидкому гелию, полученному при охлаждении газообразного, вновь становиться газом при дальнейшем остывании? Но, зная упрямство гелия, его нежелание пребывать в жидком состоянии, мы можем ожидать от него любого фокуса. Так, на фазовой диаграмме (Рис. 181), показывающей состояние гелия, в зависимости от давления и температуры, видно, что линия ACперехода нормального гелия (He I) в сверхтекучий (He II) — начинается в той же точке А, откуда выходит и линия ABперехода жидкость-газ. Это доказывает тесную связь сверхтекучего и газообразного гелия. Тогда Сбудет тройной точкой, в которой сходятся твёрдое, жидкое и газообразное состояние вещества, и которой, как полагали физики, нет у одного только гелия.

Баллистическая теория Ритца и картина мироздания - i_195.jpg

Рис. 181. Фазовая диаграмма гелия показывает связь сверхтекучего He II с твёрдым гелием и газом.

Физики привыкли твердить, что переход гелия в сверхтекучее состояние принципиально отличен от простых фазовых превращений жидкость-газ (кипение), жидкость-твёрдое тело (кристаллизация) и т. д., сопровождаемых поглощением или выделением определённого тепла и называемых "фазовыми переходами первого рода". А переход He I — He II, не выделяющий тепла, называют уже "фазовым переходом второго рода" (§ 4.18). Но это ошибка: переход гелия в сверхтекучее состояние требует отнятия у него некоторого стандартного количества тепла и столько же тепла надо вернуть, чтобы перевести гелий назад в нормальное состояние. Проморгали физики эту поистине скрытую теплоту перехода, так как привыкли иметь дело с фазовыми переходами, где всё скрытое тепло передаётся при постоянной фиксированной температуре. Так, температура плавящегося льда не тронется с 0 ºC, пока он не поглотит всю теплоту плавления. И, строя кривую теплоёмкости воды, в точке плавления следовало бы изобразить, кроме скачка теплоёмкости, ещё и очень острый пик (так называемую дельта-функцию), соответствующий бесконечной теплоёмкости, ибо в точке плавления подвод тепла не наращивает температуры. Ведь теплоёмкость единицы массы тела — это и есть, по определению, отношение подводимой теплоты к повышению температуры тела.

Перейти на страницу:
Комментариев (0)
название