Баллистическая теория Ритца и картина мироздания
Баллистическая теория Ритца и картина мироздания читать книгу онлайн
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
§ 4.13 Детерминизм в физике и объективная реальность
Демокрит настолько был увлечён возможностью "сквозного" причинного объяснения мира, что объявлял всякого рода случайные события лишь субъективной иллюзией, порождённой незнанием подлинных причин происходящего. Знание же их, по убеждению Демокрита, превращает любую случайность в необходимость.
Основная проблема неклассической физики состоит, пожалуй, в том, что она лишает мир свойства быть объективной реальностью, делает его существенно зависящим от наблюдателя, то есть, по сути, — отрицает материальность мира и материалистический подход в науке. Все понятия и свойства тел становятся условными, относительными, неопределёнными. Относительным становится не только время, пространство, длина, масса, но даже понятие волна и частица. Поэтому, все кванторелятивистские теории вполне подходят под определение "релятивизма", — идеалистического учения, отрицающего возможность объективного познания действительности, вследствие якобы полной относительности наших знаний (§ 5.12). В самом деле, Эйнштейн, в своей теории относительности, ставит весь мир в подчинение наблюдателю: к нему всё привязано. Понятия ритма процессов, длины, массы и других индивидуальных характеристик тел, по Эйнштейну, уже не имеют смысла безотносительно к наблюдателю. Это — чистейшей воды субъективизм, отрицающий объективную реальность мира. Такая абсолютизация наблюдателя — это, по сути, возвращение к геоцентрической теории Аристотеля-Птолемея, ставивших в центр мира земного наблюдателя, относительно которого всё и вертелось. Совсем как Аристотель не мог себе представить, что Солнце "покоится", так же и Эйнштейн не мог представить "покоящегося" солнечного луча света, который якобы всегда должен двигаться относительно наблюдателя с одной и той же скоростью c, равно как с постоянной скоростью движется по кругу Солнце в системе Аристотеля. О том, что Эйнштейн свёл на нет достижение Коперника, говорил ещё век назад А.К. Тимирязев [25]. Именно абсолютизированный наблюдатель (или наблюдательный прибор) выступает во всех неклассических теориях как "Пуп Земли" и своими субъективными ощущениями задаёт физическую реальность.
Причём, Эйнштейн утверждает, что зависимость явлений от наблюдателя имеет характер не просто иллюзии, а реальности. Так, ранее был рассмотрен эффект Доплера и Ритца, говорящий об изменении частоты от движущегося источника (§ 1.10). Однако, это изменение носит лишь видимый, мнимый характер. Мы знаем, что реальная частота процессов в источнике, разумеется, не меняется при движении наблюдателя относительно источника. Источнику свойственна собственная, строго заданная частота. А, следуя Эйнштейну, можно было бы и в этом случае сказать, что в зависимости от движения источника и наблюдателя происходит реальное изменение частоты процессов источника. Причём, разные наблюдатели, движущиеся с разными скоростями, зарегистрируют разные частоты источника и, с релятивистских позиций Эйнштейна, все они будут правы. Ведь и здесь нет способа узнать реально или мнимо изменение хода времени. То есть, возникает неопределённость, многозначность, индетерминизм, "физическое беззаконие": источник не имеет одной, строго заданной частоты, — частота, время не существуют в объективной реальности, они относительны, в согласии с определением релятивизма и в противоречии с материалистической классической картиной мира. То же самое и с массой, длиной: эти физические свойства теряют определённость, размываются и ставятся в зависимость от наблюдателя. В этом суть СТО. Тем самым, Эйнштейн сам идёт против детерминизма (однозначности физических значений, связанных жёсткой причинно-следственной связью), который он отстаивал, когда критиковал квантовую механику, отрицающую классический принцип причинности: принцип причинной, исторической обусловленности, закономерности всех явлений.
Могут возразить, что в такой относительности, зависимости явлений от наблюдателя нет ничего странного. Так, в книге Мартина Гарднера "Относительность для миллионов" [37] приведён такой пример: два человека равного роста смотрят друг на друга через одну и ту же рассеивающую линзу, отчего каждому кажется, что другой меньше, и в этом нет противоречия. Поэтому, точно так же, каждому из двух движущихся наблюдателей вполне может казаться, что другой короче и что частота тиканья часов у другого меньше. Но существенно то, что теория относительности указывает на реальность подобных изменений, тогда как мы знаем, что это просто фокус, иллюзия. Через линзу мы видим не сам предмет, а, лишь, — его увеличенное, искажённое изображение (§ 1.12), тогда как, истинные размеры предмета остаются неизменными, существуя в объективной реальности. Точно так же, при движении не меняется и ритм времени наблюдаемого объекта, сохраняя своё стандартное значение. У Эйнштейна же объективная физическая реальность не существует, и весь мир — это лишь субъективное восприятие, своё для каждого наблюдателя и прибора. А это есть субъективизм, идеализм, просто, — физический, завуалированный, поскольку в качестве познающего субъекта выступает уже не только человек, но и физический измерительный прибор.
С ещё большими нарушениями детерминизма и попранием объективной реальности сталкиваемся в квантовой механике. Каждая частица оказывается размыта в форме тумана неопределённости, причём, не просто распылена в каком-то объёме, а, по принципу неопределённости Гейзенберга, может находиться в каждой точке с некоторой вероятностью. Определить, в какой точке будет обнаружен, например, электрон, принципиально невозможно, в отличие от известных примеров случайных вероятностных процессов (бросание монет, костей, движения броуновских частиц). Причём, опять же, это свойство оказывается напрямую связано с наблюдателем. В зависимости от скорости движения частицы относительно наблюдателя, её положение оказывается более или менее размытым. Кроме того, относительным становится и само понятие "частица". В зависимости от системы отсчёта и наблюдателя, объект оказывается то волной, то частицей. Мы не только не можем определённо сказать, где находится в данный момент частица, но даже не можем толком указать частица ли это или волна. Это — полный индетерминизм, неопределённость, лишающая мир всех физических свойств и, прежде всего, свойства быть объективной реальностью, независимой от наблюдателя.
Именно с приходом принципа неопределённости Гейзенберга, индетерминизм, противоречащий духу материалистической науки, достиг своего апогея в физике. Не случайно, сам Гейзенберг был сторонником идеализма, который и привнёс в физику [156]. Ритц убедительно показал, в пику Эйнштейну и Гейзенбергу, что энергия локализована, что поведение атома и движение электронов в нём подчиняется законам классической механики: оно жёстко детерминировано. В то же время, именно теория Ритца позволила дать классическую трактовку принципу неопределённости Гейзенберга. Так, модель Ритца показывает, что заряд электрона и впрямь может быть "размазан" в пределах некой сферы распада, что классически объясняет эффекты туннелирования (§ 3.18). Но эта "размытость" имеет классическую природу: электрон имеет структуру, состоит из мелких частиц, летающих и делящихся в пределах его сферы. При этом, положение и движение каждой частицы в любой момент строго определено. Так же и облако атомов, электронов можно считать размытым, не имеющим чётких границ, но эта "размытость" — классическая, связанная с усреднением по времени случайного движения частиц.
Кроме того, ещё Р. Фритциус показал, что, согласно Ритцу, электрон в атоме под действием ударов реонов, испущенных ядром, должен дёргаться, дрожать: его движение становится сложным, случайным. Электрон, подобно броуновской частице в сосуде, начинает беспорядочно метаться в пределах некой области атома, имея неопределённое положение и энергию. Но, при этом, в каждый момент времени можно точно зафиксировать его мгновенную координату, скорость и энергию: тут нет принципиальных ограничений. Случайные тепловые блуждания электрона и действие ударов реонов ведут к тому, что в некоторые моменты энергия электрона и образованных из электронов частиц может превысить высоту потенциального барьера, отчего частицы его преодолевают и отрываются (§ 3.14, § 4.12). Дрожанием электронов в атоме от ударов реонов можно объяснить и естественную ширину спектральных линий, тоже связанную с принципом неопределённости (§ 3.4). Выходит, эти и другие "квантовые" явления можно объяснить без нелепого индетерминизма, а — вполне рационально и классически, если только распространить принципы статистической молекулярной физики, в том числе, принцип вероятностной необратимости, — на явления электродинамики, как предлагал ещё Ритц в споре с Эйнштейном [161].