-->

История электротехники

На нашем литературном портале можно бесплатно читать книгу История электротехники, Коллектив авторов-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
История электротехники
Название: История электротехники
Дата добавления: 15 январь 2020
Количество просмотров: 306
Читать онлайн

История электротехники читать книгу онлайн

История электротехники - читать бесплатно онлайн , автор Коллектив авторов
Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники. Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники. В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:
История электротехники - i_093.png
Рис. 6.22. Изолирующий трансформатор ИИ-110
История электротехники - i_094.png
Рис. 6.23. Автотрансформатор АТДЦТН-200000/330 с РПН в линии на стороне напряжения 110 кВ 

Освоенные Всесоюзным институтом трансформаторостроения (ВИТ, Запорожье) и ЗТЗ быстродействующие переключающие устройства класса напряжения 110 кВ с активными токоограничивающими сопротивлениями позволили выполнить РПН на стороне 110 кВ, что наиболее эффективно в достаточно распространенных автотрансформаторах 220/110 кВ (рис. 6.23).

Большим достижением трансформаторостроения стала разработка в середине 60-х годов мощных автотрансформаторов класса напряжения 750 кВ. Для систем напряжением 750 кВ необходимы шунтирующие реакторы, мощность которых превышает мощность установленных трансформаторов (соотношение мощностей примерно 2–2,5 квар/(кВ∙А). На основе ранее спроектированного однофазного высоковольтного шунтирующего реактора мощностью 55 Мвар на напряжение 500 кВ (рис. 6.24) МЭЗ изготовил шунтирующий реактор на напряжение 750 кВ, который, как и аналогичный на напряжение 500 кВ, позволил добиться уменьшения расхода материалов и габаритов за счет оригинальной конструктивной схемы. Для линии напряжением 750 кВ на МЭЗ был разработан измерительный емкостный трансформатор напряжения типа НДЕ -750 (рис. 6.25).

История электротехники - i_095.png
Рис. 6.24. Однофазный шунтирующий реактор мощностью 55 Мвар на напряжение 500 кВ конструкции 1966 г. (без сердечника, с наружной магнитной системой, охватывающей обмотку)
История электротехники - i_096.png
Рис. 6.25. Емкостный трансформатор напряжения 

В эти годы был достигнут значительный рост предельных мощностей трансформаторов; так, в 1968 г. на ЗТЗ был выпущен однофазный трансформатор мощностью 417 MB∙А класса напряжения 500 кВ. Трехфазная группа из таких трансформаторов мощностью 1250 MB∙А служит для питания от двух генераторов по 500 МВт.

Необходимость использования в полной мере свойств холоднокатаной текстурованной электротехнической стали поставила в эти годы ряд специальных требований к конструкции и технологии изготовления магнитопроводов. Одним из мероприятий, позволивших уменьшить потери и ток холостого хода в трансформаторах, стал отказ от отверстий в пластинах для прессовки стержней и ярем («бесшпилечная» прессовка) (рис. 6.26, 6.27).

Определяющей тенденцией в последующие годы явилось повышение единичных мощностей и напряжений трансформаторов.

После испытаний и исследований автотрансформатора мощностью 210 MB∙А на напряжение 1150/500 кВ (рис. 6.28), установленного на высоковольтной линии 1150 кВ, на ЗТЗ в 1975 г. был разработан автотрансформатор групповой мощностью 2000 MB∙А на напряжение 1150 кВ.

Опыт эксплуатации на линии электропередачи 750 кВ позволил освоить серийное производство трансформаторного оборудования на напряжение 750 кВ, разработать и изготовить однофазные автотрансформаторы групповой мощностью 1000 и 1250 MB∙А напряжением соответственно 750/330 и 750/500 кВ с регулированием под нагрузкой, используемые в мощных энергетических блоках ряда атомных электростанций европейской части страны. Серийно выпускается трансформаторное оборудование для энергетических блоков мощностью 800–1200 МВт (рис. 6.29) напряжением 330 и 500 кВ.

История электротехники - i_097.jpg
Рис. 6.26. Магннтопровод трансформатора типа ТЦ-630000/220 с металлическими бандажами
История электротехники - i_098.jpg
Рис. 6.27. Бесшпилечный магннтопровод трансформатора типа ТРДН-63000/110 

В 1975 г. созданы первые образцы трансформаторного оборудования для линий электропередачи постоянного тока ±750 кВ, что явилось результатом целого комплекса научно-исследовательских, опытно-конструкторских и технологических работ в области электрической изоляции, электромагнитных и тепловых нагрузок. Проведение исследований и испытаний трансформаторного оборудования для высоковольтной линии постоянного тока (±750 кВ) стало возможным после ввода экспериментального комплекса на высокие напряжения в ВИТ; здесь же проводились испытания на более высокие напряжения, в частности ± 1250 кВ постоянного тока и 1800 кВ переменного тока.

В 70–80-х годах создана серия быстродействующих переключающих устройств для трансформаторов с регулированием напряжения под нагрузкой с активными токоограничивающими сопротивлениями на напряжение 330 кВ и токи до 2000 А. В эти же годы проводились испытания трансформаторов с контактно-тиристорным переключающим устройством, а также исследования по созданию бесконтактных переключающих устройств.

В 1989 г. в Запорожье изготовлен и испытан сверхмощный блочный трансформатор типа ТНЦ-1000000/220 для Нижневартовской ГРЭС, спроектированный с учетом работы в холодном климате (специальное покрытие на баке, который выполнен из морозостойкого материала).

История электротехники - i_099.jpg
Рис. 6.28. Однофазный автотрансформатор мощностью 210 MB∙А на напряжение 1150/500 кВ для опытного участка линии электропередачи 1150 кВ переменного тока
История электротехники - i_100.jpg
Рис. 6.29. Блочный трехфазный трансформатор мощностью 630 MB·А на напряжение 330 кВ для Ленинградской АЭС 

Результаты тепловых испытаний, комплекс технологических усовершенствований, новые способы изготовления изоляционных деталей из электрокартона позволили сократить размеры изоляционных промежутков, что дало возможность существенно повысить коэффициент заполнения обмоток в окне магнитопровода; разработка оптимальных схем шихтовки магнитопроводов и конструкции их крепления дала возможность снизить потери холостого хода на 15–20%.

Глубокие исследования электромагнитных явлений в трансформаторах и реакторах позволили разработать надежные методы расчета и снижения добавочных потерь от магнитных полей рассеяния, исключать местные перегревы в элементах конструкции и повысить эксплуатационную надежность. В 70–80-х годах внесен большой вклад в достижение динамической стойкости мощных трансформаторов, что является одной из самых актуальных проблем современного трансформаторостроения; усовершенствованы методы расчета прочности и устойчивости обмоток, внедрен ряд технологических и конструктивных мер, обеспечивших повышение стойкости трансформаторов к воздействию усилий при коротких замыканиях в эксплуатации.

История электротехники - i_101.png
Рис. 6.30. Трехфазный сухой защищенный трансформатор мощностью 25 кВ∙А с пространственной магнитной системойа — общий вид; б — пространственный трехфазный навитый магнитопровод 

Постоянное повышение технического уровня силовых трансформаторов достигнуто за счет применения трансформаторной стали с улучшенными характеристиками; внедрения транспонированных и многожильных проводов, что упрощает и ускоряет намотку обмоток при одновременном снижении добавочных потерь в них: внедрения новых марок трансформаторных масел с улучшенной стабильностью и повышенным сроком службы и целого ряда других научно-технических решений.

На основе комплексной разработки конструкции, технологических процессов и специального оборудования разработана серия трансформаторов I, II габаритов (до 1000 кВ∙А) с пространственной конструкцией магнитопровода и использованием электротехнической фольги и ленты для обмоток (рис 6.30.).

Перейти на страницу:
Комментариев (0)
название