Космические корабли
Космические корабли читать книгу онлайн
Брошюра подписной научно-популярной серии «Космонавтика, астрономия» библиотечки «Знание. Новое в жизни, науке, технике» № 11, 1984 г.
В брошюре рассказывается о космических кораблях, занимающих центральное место среди различных типов космических аппаратов. Описываются структура, основные системы и оборудование космических кораблей от первых «Востоков» до современных совершенных транспортных средств.
Брошюра рассчитана на широкий круг читателей, интересующихся актуальными вопросами космической техники.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Уже говорилось, что во всех первых трех пилотируемых программах США создавалась чисто кислородная атмосфера в кабинах КК. Однако только в начале экспериментальной работы над КК «Аполлон» американские специалисты по-настоящему ощутили всю опасность такого подхода. Как известно, при подготовке первого пилотируемого КК «Аполлон» произошел пожар в командном модуле, в результате которого погибли космонавты В. Гриссом, Э. Уайт и Р. Чаффи. Причиной пожара стало возгорание элементов кабины в среде чистого кислорода в результате замыкания в электрической цепи.
Специальная комиссия в течение 2,5 мес проводила тщательное и всестороннее расследование причин аварии и выработку ряда рекомендаций по изменению конструкции, материалов, процедуры и условий испытаний. В результате было внесено большое число изменений в конструкцию, заменены многие материалы и детали кабины. В частности, был полностью переработан механизм входного люка командного модуля, после чего он мог открываться изнутри за 2 с (вместо 60–90 с, как было раньше). Оценивалось, что доработки удлинили сроки выполнения программы на 1,5 года.
После наземного пожара самой тяжелой была авария с КК «Аполлон-13», на котором произошел взрыв кислородного бака в служебном модуле. Характерна и поучительна причина этого взрыва — сочетание скрытого конструктивного дефекта и эксплуатационной ошибки. При наземных испытаниях через электрический нагреватель случайно прошел повышенный ток, расплавивший изоляцию; в полете нагреватель включился и возникло короткое замыкание. Аварии могло и не быть, если этот элемент не имел бы прямого контакта с кислородом. Чтобы вернуться на Землю, облетев Луну (только в этом случае космонавты могли вернуться на Землю), космонавты Дж. Ловелл, Дж. Суиджерт и Ф. Хейс воспользовались лунным модулем с его кислородом, электроэнергией, двигателями и другим оборудованием.
Эффективное управление обеспечивало вход КК «Аполлон» в земную атмосферу со второй космической скоростью и торможение в атмосфере. Приводнение командного модуля выполнялось на системе парашютов — три основных парашюта снижали скорость приводнения до 8 м/с. При отказе одного из парашютов эта скорость могла быть до 10,5 м/с, однако и при этом обеспечивалась безопасная посадка. Именно такой случай произошел при спуске на Землю КК «Аполлон-15».
Для того чтобы уменьшить нагрев боковой конической поверхности командного модуля в атмосфере при возвращении на Землю, конусность модуля увеличивали (до угла раскрыва 66°), когда величина суммарного теплового потока достигала 100 тыс. ккал/м2. Но как нередко бывает, решение одной проблемы создало другую. При такой форме командный модуль имел в воде два устойчивых положения, и нередко после приводнения космонавты оказывались вниз головой в кабине, раскачивающейся на волнах. На возвращение в нормальное положение, а для этого надувались специальные баллоны, уходило несколько минут. Эти минуты были нелегкими дополнительными испытаниями для космонавтов, возвращавшихся на Землю после продолжительного пребывания в невесомости.
Ряд систем, которыми снабжался ракетно-космический комплекс на случай возникновения аварийных ситуаций, так и не был испытан в полете. К ним, например, относилась САС, которая была подобна созданной для КК «Меркурий». При возникновении аварии при спуске на Луну предусматривалось спасение космонавтов и возвращение их в основной блок КК «Аполлон». При отказах посадочной ступени или других систем лунного модуля предполагалось аварийное разделение ступеней и возвращение на орбиту с помощью двигательной установки взлетной ступени. В распоряжении космонавтов находилась резервная система управления, способная выполнить все необходимые операции.
Надо сказать, что характерной особенностью подготовки и проведения космических полетов является детальное планирование не только всех этапов основной программы, но и дополнительных резервных вариантов — так называемых нештатных ситуаций. И хотя на самом деле расчетные (т. е. заранее разработанные) нештатные ситуации, как правило, не происходят — не реализуются в полете (жизнь, как всегда, оказывается гораздо богаче любых моделей), тем не менее такой подход к проектированию ракетно-космической техники и соответствующая подготовка программы оказывают неоценимую услугу для обеспечения надежности и безопасности полетов.
11 КК «Аполлон» использовались при отработке и полетах к Луне (6 из 9 полетов к Луне включали в себя посадку лунного модуля на ее поверхность). Кроме того, основной блок КК «Аполлон» применялся для доставки трех экспедиций американских космонавтов на орбитальную станцию «Скайлэб» и при осуществлении программы ЭПАС (с помощью РН «Сатурн-1Би»). Всего в полетах на КК «Аполлон» приняли участие 39 различных американских космонавтов [2].
Программа ЭПАС
Около полутора десятилетий космическая техника в СССР и США развивалась относительно независимо. Одним из мотивов объединения усилий явилось стремление иметь возможность оказывать взаимную помощь в космосе. Для этого необходима была прежде всего техническая основа и нужны были совместимые КК, способные взаимодействовать и состыковываться. Но в первую очередь в подобных делах требовалась добрая воля, которая наметилась было во взаимоотношениях стран в начале 70-х годов. Таковы были предпосылки осуществления программы экспериментального полета «Аполлон» — «Союз» (ЭПАС).
В результате первых встреч специалисты обеих стран впервые воочию убедились в разнице систем КК «Союз» и «Аполлон». К этим системам, нуждающимся в совместимости при осуществлении программы ЭПАС, прежде всего относились системы сближения, стыковки, жизнеобеспечения и связи. Вначале были созданы 4 смешанные рабочие группы по этим системам, позже к ним присоединилась пятая, ответственная за общую увязку технических вопросов, организацию и планирование (эта группа получила порядковый № 1). Эти специалисты во главе с техническими директорами проекта (с советской стороны членом-корреспондентом АН СССР К. Д. Бушуевым, с американской — доктором Г. Ланни) преодолели все противоречия и подготовили экспериментальный полет КК «Союз» и «Аполлон».
КК «Союз-19» и «Аполлон», изготовленные и испытанные по программе ЭПАС независимо, стартовали 15 июля 1975 г. соответственно с космодрома Байконур и космодрома им. Кеннеди. Между КК была установлена двухсторонняя связь, они сблизились и произвели одну за другой две стыковки (17 и 19 июля). Общая масса состыкованных КК составила 20,97 т. Воспользовавшись переходным модулем, советские и американские космонавты совершили несколько взаимных визитов. После успешного выполнения программы КК «Союз-19» благополучно приземлился (а КК «Аполлон» приводнился) в расчетном районе.
Для обеспечения совместимости технических систем использовались различные методы. Совместимость, например, стыковочных агрегатов, непосредственно механически взаимодействующих и соединяемых частей КК, была обусловлена тем, что создали принципиально новое стыковочное устройство. Вместо стыковочного механизма с конусом и штырем, который служил рабочим элементом амортизатора и производил предварительные выравнивание и стягивание КК «Союз», в новой конструкции по периферии стыковочных шпангоутов размещались кольца с тремя лепестками.
При взгляде с торца оба агрегата выглядят одинаковыми, но тем не менее соединяются между собой; специалисты в этом случае их называют андрогинными (двуполыми в переводе с древнегреческого). Кроме того, каждый агрегат мог выполнять как активную роль (производить все операции при помощи расположенных на нем механизмов), так и пассивную роль. Андрогинные периферийные агрегаты стыковки (АПАС) незаменимы там, где требуется обеспечить возможность стыковки многих космических аппаратов между собой.
Специалисты каждой страны спроектировали и изготовили свой АПАС, который существенно отличался по принципиальной схеме и по конструкции отдельных элементов. Совместимость АПАС достигалась согласованием минимального числа размеров и характеристик. Такой подход существенно упростил всю работу. Совместимость была проверена при совместных испытаниях и контрольной проверке летных агрегатов.
