-->

Баллистическая теория Ритца и картина мироздания

На нашем литературном портале можно бесплатно читать книгу Баллистическая теория Ритца и картина мироздания, Семиков Сергей Александрович-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Баллистическая теория Ритца и картина мироздания
Название: Баллистическая теория Ритца и картина мироздания
Дата добавления: 16 январь 2020
Количество просмотров: 188
Читать онлайн

Баллистическая теория Ритца и картина мироздания читать книгу онлайн

Баллистическая теория Ритца и картина мироздания - читать бесплатно онлайн , автор Семиков Сергей Александрович

Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Итак, все "элементарные" частицы, на деле, отнюдь не элементарны, а состоят из более мелких, — мезонов или электронов. Что же удерживает все мелкие частицы-детальки в составе крупных? Как они расположены в сборной частице, какие пространственные структуры образуют? Выше было показано, что ядро, протоны и нейтроны имеют кристаллическую структуру — образованы из периодично расположенных в пространстве электронов и позитронов, образующих своего рода электрон-позитронную решётку. Кристалловидное строение должно быть свойственно не только атомам, ядрам, но и мезонам. В конце концов, раз есть кристаллы, построенные из атомов, то почему не быть кристаллам, образованным элементарными частицами, электронами и позитронами? Так же, как для атомов, клеем, цементирующим мезоны или электроны внутри кристаллов-частиц, будут служить электрические силы. Многие учёные уже считают, что ядерные и другие взаимодействия, удерживающие частицы, — это лишь частные проявления электрического взаимодействия [19, 79], так же как и магнетизм с гравитацией (§ 3.16).

Из такого электрон-позитронного строения следует также, что масса частицы равна числу образующих её электронов и позитронов. Напомним: ещё Ньютон определял массу тел как количество заключённой в них материи, тем самым, как бы, вводя в соответствии с атомистическим учением Демокрита некие первоосновные точечные частицы единичной массы — "амеры" [31]. И если из них построены все прочие частицы, то масса любой из них — это число таких единиц в её составе. Этими частицами стандартной единичной массы, как видели, окажутся именно электроны с позитронами. Вот как эту идею Демокрита излагает Лукреций [77, с. 42]: "Есть предельная некая точка тела того, что уже недоступно для нашего чувства, то, несомненно, она совсем неделима на части, … ибо другого она единая первая доля, вслед за которой ещё подобные ей, по порядку сомкнутым строем сплотясь, образуют телесную сущность… И ничего ни отторгнуть у них, ни уменьшить природа не допускает уже, семена для вещей сберегая". Как видим, эти единичные частицы-семена (амеры Демокрита) в точности подобны электронам, так же имеющим стандартный вес, который не может уменьшаться (§ 1.5), и образующим, при соединении в правильном порядке, все прочие частицы и атомы.

Правильная кристаллическая форма частиц микромира не только энергетически выгодна, но и объясняет, почему одинаковы свойства у частиц одного типа, скажем, у двух протонов: они похожи как кристаллы одного минерала. Насыпьте горсть кристаллов сахарного песка — и в этой россыпи пред вами будут сотни близнецов. Точное подобие формы кристаллов, их граней, идеальное равенство углов — не такую ли идентичность свойств мы наблюдаем у элементарных частиц? Собственно говоря, и Демокрит пришёл к идее атомов, наблюдая кристаллические зёрна горных пород, крупинки песка. Кристаллическая форма — единственно возможная для частиц микромира, мира порядка, идеального подобия структур.

Итак, подобно ядрам и протонам (§ 3.2), из электронов и позитронов составлены, как из кирпичиков, и все прочие частицы — мезоны, гипероны, резонансы и т. п. При этом, электроны и позитроны составляют прежде блоки (мезоны), а уже из них строятся тяжёлые частицы. Мы, ведь, никогда не говорим, что автомобиль состоит из винтиков, гаек, деталек, сварных листов и т. п. Но показываем, что в нём есть двигатель, трансмиссия, шасси и кузов. Так и частицы правильнее подразделять не на сотни отдельных электронов и позитронов, а на образуемые ими крупные комплексы, блоки, то есть, — на более сложные и тяжёлые частицы. Выше было показано, что фактически любую частицу можно представить в виде набора трёх типов мезонов, комбинируемых в разных сочетаниях. Потом удалось свести их даже к двум, когда выяснилось, что π-мезоны (пионы) — сами составные. Далее оказалось, что картину можно ещё упростить и исключить минусовые массы, если признать и μ-мезон (мюон) составной частицей, включающей в себя несколько гаммонов. То, что мюон составной, следует уже из его распада.

Как легко видеть, гаммонов в мюоне может быть не более трёх. Ведь в сумме масса трёх гаммонов 66·3=198 немного не добирает до массы мюона, равной 207, или 206, если исключить массу электрона, придающего мюону заряд. Очевидно, остаток с массой, равной восьми электронным (8 me), соответствует новой частице. Эту гипотетическую частицу можно назвать "окто-мезоном" (или "октоном" — по её массе), обозначив "О". Поскольку, она до сих пор не открыта, то, надо думать, она так же нейтральна, как гамма-мезон. Мешает её обнаружению и малая масса. Что касается заряда мюона, то, раз его образуют нейтральные гаммоны и октоны, он обязан содержать, сверх того, — один избыточный электрон (или позитрон, если речь идёт о положительно заряженном антимюоне). Именно этот электрон вылетает из мюона при его распаде (Рис. 118). Оставшаяся масса мюона, как считают, попросту исчезает. На деле же она сохраняется в виде трёх гаммонов и октона, — нейтральных, а потому незаметных. Напомним, что точно так же сохраняется в виде гаммонов и масса при распадах пионов (§ 3.8).

Баллистическая теория Ритца и картина мироздания - i_124.jpg

Рис. 118. Предполагаемая схема распада мюона, его возможное строение и массы компонентов.

Итак, если мюон состоит из трёх гаммонов, одного октона и одного электрона, его масса составит 66·3+8+1=207. Тогда нейтральный пион состоит из четырёх гаммонов, а заряженный пион будет состоять из четырёх гаммонов, октона и электрона. Так что, его масса M=66·4+8+1=273. Таким образом, заряженный пион отличается от незаряженного только наличием октона, сцепленного с электроном. Гаммон и октон тоже должны, в свою очередь, состоять из электронов и позитронов. Удивляет, однако, почему же именно эти сочетания элементарных зарядов образуют стабильные блоки в виде длительно не распадающихся частиц. В случае октона, ответ напрашивается сам собой: ведь 8 — это число, сопряжённое с высокой устойчивостью. Недаром, в таблице Менделеева восьмёрка играет столь важную роль, порождая восемь групп элементов и служа основным периодом повторения свойств элементов, подобно тому как в музыке через октаву повторяется звукоряд. Также 8 — это одно из шести магических чисел, — особо устойчивых сочетаний нейтронов или протонов в ядре (§ 3.6). Интересно отметить, что и БТР с "Луноходом" сконструировали восьмиколёсными именно для обеспечения устойчивости на пересечённой, "тряской" местности (Рис. 200). Подобная "тряска" действует и в мире элементарных частиц, подвергающихся постоянным ударам (§ 3.14). И, во избежание скорого крушения, частицам необходима геометрическая устойчивость.

Причину такой "магичности" числа восемь легко понять. Ведь 8=2 3: именно восемь частиц образуют куб, размещаясь в его вершинах. Видно, так устроен и октон: из чередующихся в углах кубика четырёх электронов и четырёх позитронов. Заметим, что ещё И. Ленгмюр допустил способность восьми электронов, расположенных в атоме в вершинах куба, образовывать сверхстабильную структуру, чем объяснил периодичное повторение свойств элементов и апатичность инертных газов, с их целиком заполненными куб-оболочками (Рис. 106). Зато квантовая физика так и не объяснила толком, почему групп элементов ровно восемь. И лишь кристаллическая модель атома позволяет обосновать избранность восьмёрки, поскольку восьмивершинный куб и параллелепипед — это самая распространённая и простая форма кристаллической ячейки.

Осталось выяснить, почему стабильным оказывается и гаммон, — частица с массой в 66 электронных. Если дело в устойчивости кристаллической структуры, то причина, возможно, в близости 66 к 64=4 3. Иными словами, 64 частицы составляют куб с ребром в 4 частицы. И он тоже будет стабильным, поскольку электроны и позитроны стали бы в нём чередоваться, словно положительные и отрицательные ионы в кубическом кристалле соли (Рис. 119). Таким образом, гаммон должен состоять из 32-х электронов и 32-х позитронов. Правда, непонятно, откуда берутся в гаммоне две дополнительные единицы массы. Но, учитывая, что масса его рассчитана теоретически, а не измерена в опыте, вполне может статься, что реальная масса — именно 64. К тому же, надо учесть, что взаимодействие электронов и позитронов, их сближение и движение отдельных частиц может приводить к неточному измерению их общей массы (§ 3.18).

Перейти на страницу:
Комментариев (0)
название