-->

Материаловедение. Шпаргалка

На нашем литературном портале можно бесплатно читать книгу Материаловедение. Шпаргалка, Буслаева Елена Михайловна-- . Жанр: Технические науки. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Материаловедение. Шпаргалка
Название: Материаловедение. Шпаргалка
Дата добавления: 16 январь 2020
Количество просмотров: 89
Читать онлайн

Материаловедение. Шпаргалка читать книгу онлайн

Материаловедение. Шпаргалка - читать бесплатно онлайн , автор Буслаева Елена Михайловна

Шпаргалка содержит краткие и ясные ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Материаловедение». Издание может быть полезно всем студентам технических вузов, изучающим Дисциплину «Материаловедение».

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 6 7 8 9 10 11 12 13 14 ... 33 ВПЕРЕД
Перейти на страницу:

с содержанием чистого металла не менее 99,5 %. Алюминиевую проволоку изготовляют путем волочения и прокатки. Проволока из алюминия бывает трех видов марок: АМ (мягкая отожженная), АПТ (полутвердая) и АТ (твердая неотожженная). Проволоку выпускают диаметром от 0,08 до 10 мм.

Полупроводники составляют обширную область материалов, отличающихся друг от друга большим многообразием электрических и физических свойств, а также большим многообразием химического состава, что и определяет различные назначения при их техническом использовании. По химической природе полупроводники можно разделить на следующие четыре главные группы.

1. Кристаллические полупроводниковые материалы, построенные из атомов и молекул одного элемента.

2. Окисные кристаллические полупроводниковые материалы, то есть материалы из окислов металлов.

3. Кристаллические полупроводниковые материалы на основе соединений атомов третей и пятой групп системы элементов таблицы Менделеева.

4. Кристаллические полупроводниковые материалы на основе соединений серы, селена, меди, свинца – они называются сульфидами, селенидами.

Карбид кремния относится к первой группе полупроводниковых материалов и является наиболее распространенным монокристаллическим материалом. Этот полупроводниковый материал представляет собой смесь множества малых кристалликов, беспорядочно спаянных друг с другом. Карбид кремния образуется при высокой температуре при соединении графита и кремния. Его используют в фотоэлементах, диодах.

Возможность повышения рабочей температуры изоляции для практики очень важна. В электрических машинах и аппаратах повышение нагрева, которое обычно ограничивается именно материалами электрической изоляции, дает возможность получить большую мощность при тех же габаритах или же при сохранении мощности уменьшить размеры и стоимость изделия.

ГОСТ предусматривает разделение электроизоляционных материалов для электрических машин, трансформаторов и аппаратов на классы нагревостойкости, для которых фиксируются наибольшие допустимые рабочие температуры при использовании этих материалов в электрооборудовании общего применения, длительно работающего в нормальных для данного вида электрооборудования эксплуатационных условиях.

При этих температурах обеспечиваются целесообразные сроки службы электрооборудования.

К классу Y относятся волокнистые материалы на основе целлюлозы и шелка (пряжа, ткани, ленты, бумаги, картоны, древесина и т. п.), если они не пропитаны и не погружены в жидкий электроизоляционный слой.

16. Методы определения электрических свойств

Металлы с высокой электропроводностью (медь, алюминий) используются в электромашиностроении, для устройства линий электропередачи, а сплавы с высоким электросопротивлением – для ламп накаливания электронагревательных приборов.

Тепловые свойства диэлектриков: нагревостойкость, холодостойкость, теплопроводность, тепловое расширение.

Нагревостойкость – способность электроизоляционных материалов и изделий без вреда для них некоторое время выдерживать воздействие высоких температур. Нагревостойкость неорганических диэлектриков определяется по началу существенного изменения электрических свойств. А нагревостойкость органических диэлектриков – по началу механических деформаций растяжения или изгиба, погружению иглы в материал под давлением при нагреве, по электрическим характеристикам.

Тепловое старение изоляции – ухудшение качества изоляции, определяемое при длительном воздействии повышенной температуры.

На скорость старения влияет температура, при которой работает изоляция электрических машин и других электроизоляционных конструкций.

Влияние на скорость старения также оказывают изменение давления воздуха или концентрация кислорода, присутствие озона, химических реагентов, замедляющих или ускоряющих старение. Тепловое старение ускоряется от освещения ультрафиолетовыми лучами, от воздействия электрического поля, механических нагрузок.

ГОСТ предусматривает разделение электроизоляционных материалов для электрических машин, трансформаторов и аппаратов на классы нагревостойкости. При допустимых температурах обеспечиваются целесообразные сроки службы электрооборудования.

Класс Y: волокнистые материалы на основе целлюлозы и шелка, не пропитанные и не погруженные в жидкий электроизоляционный слой.

Класс А: органические волокнистые материалы, работающие пропитанными лаками и погруженные в жидкий электроизоляционный материал, т. е. защищены от воздействия кислорода воздуха.

Класс Е: пластические массы с органическим наполнителем и термореактивным связующим типа фенолофор-мальдегидных и подобных им смол, изоляция эмалированных проводов на полиуретановых и эпоксидных лаках. К классам Y, А, Е относятся чисто органические электроизоляционные материалы.

Электрическая прочность определяется пробивным напряжением, отнесенным к току диэлектрика в месте пробоя.

Пробой жидких диэлектриков происходит в результате ионизационных тепловых процессов.

Главный фактор пробоя – наличие посторонних примесей.

Наличие примесей вызывает затруднения для создания теории пробоя этих веществ. Поэтому представления теории электрического пробоя применяют к жидкостям, максимально очищенным от примесей.

При высоких значениях напряженности электрического поля может происходить вырывание электронов из металла электродов и разрушение молекул самой жидкости за счет ударов заряженными частицами. При этом большая электрическая прочность жидких диэлектриков по сравнению с газообразными объясняется значительно меньшей длиной свободного пробега электронов.

Пробой жидкостей, содержащих газовые включения, объясняется местным перегревом жидкости (за счет энергии, выделяющейся в сравнительно легко ионизирующихся пузырьках газа), который приводит к образованию газового канала между электродами.

Наличие воды в жидком диэлектрике снижает его электрическую прочность. Вода при нормальной температуре содержится в диэлектрике в виде мельчайших капелек. Под влиянием электрического поля капельки поляризуются и создают между электродами цепочки с повышенной проводимостью, по которым происходит электрический пробой.

Наблюдается своеобразная зависимость электрической прочности жидкого диэлектрика, содержащего воду от температуры. При повышении температуры вода переходит в состояние молекулярного раствора, в котором она слабо влияет на величину электрической прочности. Электрическая прочность жидкого диэлектрика возрастает до некоторого максимума. Дальнейшее снижение электрической прочности объясняется явлениями кипения жидкости.

Увеличение электрической прочности трансформаторного масла при низких температурах связывают с увеличением вязкости масла и меньшими значениями диэлектрической проницаемости льда по сравнению с водой.

Твердые вкрапления (сажа, волокна) искажают электрическое поле внутри жидкости и также приводят к снижению электрической прочности диэлектрических жидкостей.

Очистка жидких диэлектриков от примесей заметно повышает электрическую прочность. Так, например, неочищенное трансформаторное масло имеет электрическую прочность примерно 4 МВ/м; после тщательной очистки она повышается до 20–25 МВ/м.

На пробой жидких диэлектриков, как и газов, оказывает влияние форма электродов: с увеличением степени неоднородности электрического поля пробивное напряжение при одинаковых расстояниях снижается. В неоднородных электрических полях, так же как и в газах, может быть неполный пробой – корона. Длительная корона в жидких диэлектриках недопустима, т. к. она вызывает разложение жидкости.

Частота тока влияет на электрическую прочность.

17. Теплоемкость и теплопроводность металлов и сплавов

Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины теплопроводности зависит возможность появления трещин в металле. Если теплопроводность низкая, то риск возникновения трещин увеличивается. Так, легированные стали имеют теплопроводность, которая в пять раз меньше, чем теплопроводность меди и алюминия. Размер теплоемкости влияет на уровень расходуемого топлива на нагрев заготовки до определенной температуры.

1 ... 6 7 8 9 10 11 12 13 14 ... 33 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название