Синергетика как феномен постнеклассической науки
Синергетика как феномен постнеклассической науки читать книгу онлайн
Характеризуя синергетику как междисциплинарное направление исследований, среди прочих ее отличительных черт, обычно отмечают, что это новое, молодое, недавно возникшее, «становящееся» направление научного поиска. И действительно, если связывать дату рождения синергетики с началом 70-х годов нашего века, когда появились работы Германа Хакена, который ввел термин «синергетика» в научную литературу, то срок ее существования выглядит сравнительно небольшим. Однако уже с этой точки зрения философско-методологическое, мировоззренческое осмысление синергетики — задача актуальная, коль скоро нас интересуют особенности современной постнеклассической науки, ее «человекоразмерность» (В.С.Степин), те новые и новейшие тенденции ее развития, которые именно в синергетике находят свое наиболее отчетливое выражение. (С.П.Курдюмов, Ю.А.Данилов, Ю.Л.Климонтович, Г.А.Малинецкий, Д.С.Чернавский.)
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Предположим теперь, что мы наблюдаем за макроскопическими проявлениями в поведении некоторой изучаемой нами в эксперименте системы, и что эти проявления имеют хаотический характер. Не зная о существовании странных аттракторов, экспериментатор мог предположить, что он имеет дело с системой со многим числом степеней свободы, либо увидеть в наблюдаемом им хаосе свидетельство некорректности эксперимента, наличие случайных внешних воздействий, от которых он не сумел изолировать изучаемую им систему. Открытие странных аттракторов у экспериментатора открывает компромиссную третью возможность для выбора исходной идеализации исследуемой системы, предположив, что за наблюдаемым хаосом стоит скрытый порядок, который можно описать небольшим числом существенных параметров — условий, в которых функционирует исследуемая им система. Здесь важна устойчивость странных аттракторов при малых возмущениях, т.е. их нечувствительность к неизбежным во всяком эксперименте помехам. Именно благодаря этому динамические системы со странными аттракторами могут устойчиво воспроизводиться в эксперименте, а их стохастичность может рассматриваться в качестве внутреннего свойства таких систем, которое поддается описанию без привлечения идей теории вероятности, и на основе одной или двух ключевых переменных и нескольких ключевых параметров системы. Разумеется, эти переменные параметры еще необходимо найти, реконстриуровать, исходя из данных экспериментального наблюдения.
Из сказанного также следует неоправданность иерархической субординации, абстракции и идеализации, согласно которой последняя играет в познании подчиненную роль. Сетевая модель «горизонтальных коммуникаций лучше подходит для представления абстракции и идеализации в качестве средств познавательной деятельности. В познавательной деятельности, отмечает Хаттен, необходимо «сохранять баланс — иногда весьма рискованный — между идеализацией и абстракцией, для того, чтобы в конечном счете достигнуть интеграции концепций на определенном уровне и сформулировать удовлетворительную (proper) теорию».
Но дело не только в балансе между идеализацией и абстракцией, хотя он необходим для поддержания коммуникации между теорией и экспериментом. Дело и в том, что в самой структуре физической теории всегда присутствуют идеализации. Из них, пожалуй, самая важная — это идеализация изолированной, или замкнутой, системы. Из всех имеющихся в современной западной методологической литературе подходов к пониманию сущности научной теории на это обстоятельство в должной мере обращается внимание лишь в рамках так называемого семантического похода, развиваемого Бетом, Ван Фрасеном и Суппе. Семантический подход к научной теории был предложен в качестве альтернативы стандартной модели теории как системы логически упорядоченных утверждений. Семантический подход рассматривает теории «не как совокупности высказываний или утверждений, а как некие внелингвистические сущности, которые могут быть описаны или охарактеризованы посредством некоторого числа их лингвистических формулировок». Научные теории имеют своим предметом некоторый класс явлений, именуемый областью задания (intended scope) теории. В то же время ни одна теория не претендует на описание всех аспектов явлений в области ее задания. Теория предполагает возможность вычленения из явлений некоторых идеализированных систем, описываемых определенным числом параметров и степеней свободы. Иными словами, в области ее задания теория фактически характеризует не явления как таковые, а их идеализированные копии (replicos), именуемые обычно физическими системами.
Существенно, что эти системы в классической физике рассматриваются как замкнутые или относительно изолированные от остального мира. По словам Ю.И.Манина, такая система — «это часть Вселенной, эволюция которой в течение некоторого периода существования определяется лишь внутренними законами. Внешний мир или не взаимодействует с системой вовсе, или в некоторых моделях это взаимодействие учитывается суммарно как эффект связей, внешнего поля, термостата...». Далее Манин пишет, что для «математика изолированная система это: а)ее фазовое пространство, т.е. множество мгновенных состояний движения системы; б)множество кривых в разовом пространстве, изображающих возможные истории системы...».
И это понимание сконструированной идеализированной природы физических систем как автопоэзисов, которые операционально замкнуты языком их описания, в свою очередь дает нам возможность лучше понять роль теоретизации и экспериментации в создании познанием новых миров и реальностей.
2.7 Общая теория систем и синергетика: пример контакта, который не состоялся
В перечне предшественников синергетики в качестве претендента на роль междисциплинарной методологии помимо кибернетики обычно упоминается и общая теория систем. Имеет смысл остановиться на этом подробнее. На тему системности, системного подхода, общей теории систем написаны буквально горы книг и статей, многие из которых теперь представляют чисто исторический интерес. И все же надежда на синергетическое переоткрытие здесь есть. В конце концов никто не оспаривал утверждений, согласно которым специфика системного подхода наиболее отчетливо проявляется в контексте комплексных научно-технических проблем, связанных с познанием, конструированием и управлением сложноорганизованными эволюционирующими системами. В естествознании с такими системами имеют дело биология, экология, информатика, науки о земле, а также физика. Но это стало ясно после возникновения синергетики. Именно в лице синергетики физика становится наукой о познании сложноорганизованных систем. Причем это утверждение справедливо не только в отношении каких-то отдельных областей физики или ее приложений. Оно справедливо в отношении физики в целом, воссоздающей познаваемый ею мир в лейбницевском облике динамически сложных автопоэтических единств, когерентно связанных процессов. Эта тенденция видеть в познаваемых системах сложноорганизованные эволюционирующие миры отчетливо выражена в современной космологии, активно использующей для построения своих моделей весь арсенал фундаментальных теорий и методов современной физики. Примером здесь может служить возникшая одновременно с синергетикой физика черных дыр, которая опирается, с одной стороны, на развитие таких новейших методов наблюдения, как рентгеновская и гамма-астрономия, а с другой стороны — на систему теорий классической и квантовой физики, в том числе на общую теорию относительности (ОТО), квантовую теорию поля и термодинамику. Исследования всей совокупности явлений, связанных со свойствами таких миров, как черные дыры, носят отчетливо выраженный междисциплинарный характер. И все же коммуникативный контакт системных исследований и физики в явном виде не состоялся.
Системные теоретики, как правило, избегают предлагать свои услуги в качестве экспертов по вопросам методологии физики. Аналогичным образом, физики также предпочитают не выступать с оценками перспектив общей теории систем и системного подхода. Отсутствие выраженного интереса у физиков и системных теоретиков к проблематике друг друга отразилось и в философско-методологической литературе, где вопросам взаимоотношений физики и системных исследований уделялось мало внимания.
Это обстоятельство ранее пытались объяснить, утверждая, что физика все еще слишком механистична, редукционистски ориентирована, не ассимилировала полностью основные системные установки на синтетическое воспроизведение картины исследуемой ей реальности и т.д. Отсюда следовал вывод, что в развитии системных исследований «нельзя ожидать помощи от традиций физических наук».
При этом под «традициями физических наук» авторы цитированного высказывания имеют в виду не только опыт классической физики, но и физики современной, т.е. опыт всей физики в целом. Не отрицая, что «физики (это типично для прикладной физики) все в большей степени начинают заниматься исследованием сложных систем, необходимых для развития современной техники», они тем не менее считают нужным подчеркнуть, что физика ориентируется на исследование простых объектов. Достигается эта простота путем декомпозиции исследуемых физикой систем на элементарные компоненты, изучаемые изолированно в контексте определенной контролируемой экспериментальной ситуации. В приверженности физики этой методологии и заключается основной секрет ее прогресса. Но одновременно с этим отсюда же вытекает и скептическая оценка значения методологического опыта физики для развития системных идей. [188,189]