-->

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

На нашем литературном портале можно бесплатно читать книгу Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы, Вайнберг Стивен-- . Жанр: Прочая научная литература / Физика / Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Название: Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Дата добавления: 15 январь 2020
Количество просмотров: 347
Читать онлайн

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы читать книгу онлайн

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы - читать бесплатно онлайн , автор Вайнберг Стивен

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.

Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?

Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.

Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами. Она распахивает читателю двери в новый мир и помогает понять то, с чем он там встретится.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 5 6 7 8 9 10 11 12 13 ... 82 ВПЕРЕД
Перейти на страницу:

Итак, мы опять столкнулись со стандартной моделью. На самом деле любые вопросы о физических или химических свойствах карбоната кальция сходятся через цепочку «почему?» к одной общей точке: к современной квантово-механической теории элементарных частиц, т.е. к стандартной модели. Но физика и химия – очень легкие предметы. Что, если взять что-нибудь позаковыристей, например биологию?

Наш кусочек мела не является идеальным кристаллом карбоната кальция, но в то же время это и не бесформенная каша из отдельных молекул, как в газе. Как объяснял Хаксли в своей лекции в Норвиче, мел состоит из скелетов крохотных живых существ, которые при жизни поглощали из воды древних морей соли кальция и углекислый газ и использовали эти химические вещества как сырье для строительства маленьких оболочек из карбоната кальция вокруг своих нежных тел. Не нужно особого воображения, чтобы понять, зачем им это потребовалось, – море не самое безопасное место для беззащитных комочков белка. Но это само по себе не объясняет, почему растения и животные развили в себе органы вроде оболочки из карбоната кальция, помогающие им выжить; нуждаться не значит иметь. Ключ к пониманию этого нашли Дарвин и Уоллес, для популяризации и защиты работ которых столь много сделал Хаксли. В живых существах происходят наследуемые изменения, иногда благоприятные, иногда не очень. Те организмы, которым посчастливилось претерпеть благоприятные изменения, имеют больше шансов выжить и передать эти полезные характеристики своему потомству. Но откуда берутся эти изменения и почему они наследуются? Ответ на эти вопросы был наконец дан в 1950-е гг. и свелся к раскрытию структуры очень большой молекулы ДНК, которая служит шаблоном для построения белков из аминокислот. Молекула ДНК образует двойную спираль, хранящую генетическую информацию, зашифрованную последовательностью химических структур вдоль каждой из нитей спирали. Генетическая информация передается в тот момент, когда двойная спираль расщепляется и каждая из двух ее нитей воспроизводит собственную копию; наследуемые изменения возникают тогда, когда по случайным причинам изменяются те химические структурные единицы, из которых построена нить спирали.

Раз мы спустились на уровень химии, то остальное уже довольно ясно. Конечно, ДНК слишком сложна, чтобы мы могли для объяснения ее структуры использовать уравнения квантовой механики. Но эта структура достаточно успешно объясняется обычными законами химии, и никто не сомневается, что будь у нас достаточно мощный компьютер, мы смогли бы в принципе объяснить все свойства ДНК, решив уравнения квантовой механики для электронов и ядер нескольких обычных химических элементов, свойства которых, в свою очередь, объясняются стандартной моделью. Итак, мы опять оказались в той же общей точке всех наших стрелок объяснений.

Я пока что не касался важного отличия биологии от физических наук, а именно присутствия элемента историзма. Если под «мелом» мы подразумеваем «вещество, из которого состоят белые скалы в Дувре» или «предмет в руках Хаксли», тогда утверждение, что мел состоит на 40 % из кальция, на 12 % из углерода и на 48 % из кислорода должно объясняться смесью универсальных и исторических причин, включающих события, происходившие в истории нашей планеты или в жизни Томаса Хаксли. Те утверждения, которые мы надеемся объяснить с помощью окончательных законов природы, относятся к типу универсальных. Одной из таких универсалий является утверждение, что (при достаточно низких температуре и давлении) существует химическое соединение, состоящее из кальция, углерода и кислорода точно в тех пропорциях, которые указаны выше. Мы полагаем, что такие утверждения верны везде во Вселенной и в любые моменты времени. Точно так же можно высказать универсальные утверждения о свойствах ДНК, однако существование живых существ на Земле, использующих ДНК для передачи случайных изменений от поколения к поколению, зависит от определенных исторических событий: есть такая планета как Земля; жизнь и обмен генетической информацией как-то начались; было достаточно времени на эволюцию.

Не только биология содержит элемент историзма. Это же верно и в отношении многих других наук, например геологии и астрономии. Возьмем еще раз наш кусочек мела и спросим, откуда на Земле взялись достаточные запасы кальция, углерода и кислорода, чтобы обеспечить сырье для постройки защитных панцирей, из которых потом образовался мел? Ответ прост – этих элементов полно во Вселенной. Но почему это так? Мы вновь должны апеллировать к смеси универсальных и исторических принципов. Мы знаем, как использовать стандартную модель элементарных частиц, чтобы проследить ход ядерных реакций в рамках общепринятой модели «Большого взрыва» Вселенной и вычислить, что материя, сформировавшаяся за первые несколько минут существования Вселенной, состояла на три четверти из водорода и на одну четверть из гелия и содержала лишь ничтожные следы других элементов, главным образом очень легких (например, лития). Это и было тем сырьем, из которого позднее в недрах звезд образовались более тяжелые элементы. Расчеты последующего хода ядерных реакций в звездах показывают, что больше всего возникло тех элементов, ядра атомов которых наиболее прочны. Среди таких элементов есть кальций, углерод и кислород. Звезды выбрасывают вещество в межзвездную среду за счет разного рода процессов, включающих звездный ветер и взрывы сверхновых. Звезды второго поколения, вроде Солнца и его планет, как раз и образовались из этого межзвездного вещества, обогащенного элементами, входящими в состав мела. Но такой сценарий все же зависит от предположения исторического характера, а именно что действительно произошел более или менее однородный Большой взрыв, в котором образовалось около десяти миллиардов фотонов на каждый кварк. Было предпринято множество попыток объяснить такое предположение в рамках возможных космологических теорий, однако сами эти теории базируются на других предположениях исторического характера.

Неясно, всегда ли сохранится различие между универсальными и историческими элементами в наших науках. Современная квантовая механика, так же как и механика Ньютона, ясно отличает условия, описывающие начальное состояние системы (не имеет значения, подразумевается ли вся Вселенная или только ее часть), от законов, управляющих последующей эволюцией этой системы. Однако возможно, что когда-нибудь начальные условия возникнут как часть законов природы. Простой пример того, как это может быть, дает так называемая теория стационарной Вселенной, предложенная в конце 1940-х гг. Германом Бонди и Томасом Голдом, а также (в несколько ином варианте) Фредом Хойлом. В этой модели все галактики разбегаются друг от друга (это иногда выражают несколько неточно словами, что Вселенная расширяется 9)), но несмотря на это происходит непрерывное рождение материи, которая заполняет расширяющиеся межгалактические пустоты с такой скоростью, что Вселенная поддерживается в неизменном состоянии и выглядит всегда одинаково. У нас нет приемлемой теории того, как могло бы происходить такое непрерывное рождение материи, но вполне возможно, что если бы подобная теория у нас была, мы смогли бы с ее помощью показать, что расширение Вселенной происходит с такой равновесной скоростью, что рождение материи в точности компенсирует расширение. Это напоминало бы экономическую теорию, согласно которой цены сами подстраиваются так, чтобы предложение уравновесило спрос. В такой теории стационарной Вселенной нет нужды в начальных условиях, так как нет самого начала, а вместо этого факт существования Вселенной можно вывести из условия, что она не меняется.

Первоначальная версия космологии стационарной Вселенной была достаточно надежно исключена благодаря разным астрономическим наблюдениям, главным среди которых было открытие в 1964 г. микроволнового излучения, как полагают, оставшегося от того времени, когда Вселенная была много плотнее и горячее. Может быть, теория стационарной Вселенной возродится при переходе к бо́льшим масштабам в какой-нибудь будущей космологической теории, которая будет рассматривать сегодняшнее расширение Вселенной всего лишь как флуктуацию в вечной, в среднем неизменной, но постоянно флуктуирующей Вселенной. Существуют и более тонкие возможности, что начальные условия когда-нибудь смогут быть выведены из окончательных законов. Джеймс Хартль и Стивен Хокинг предложили один такой вариант, в рамках которого слияние физики и истории объясняется применением законов квантовой механики ко Вселенной в целом. В наши дни квантовая космология вызывает большие споры среди ученых; концептуальные и математические проблемы очень сложны, и пока что не видно, что нам удалось продвинуться к каким-то определенным выводам.

1 ... 5 6 7 8 9 10 11 12 13 ... 82 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название