Экология человека
Экология человека читать книгу онлайн
Учебное пособие посвящено актуальной проблеме: взаимодействию человека со средой обитания. Автор рассматривает основные этапы развития экологии человека, теоретические аспекты адаптации. Раскрываются вопросы адаптации как взрослых, так и детей к различным природным, климатогеографическим условиям, а также к экстремальным факторам среды. Особое внимание уделяется проблеме социальной адаптации. Впервые обобщается накопленный наукой материал о возрастных особенностях адаптации.
Пособие предназначено для преподавателей вузов и студентов, обучающихся по специальностям «Экология» и «Биология», а также для специалистов в области биологии, экологии и медицины.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
3. Токсическое действие кислорода при гипербарии. До настоящего времени это остается очень важной и сложной проблемой. Повышенное содержание кислорода в дыхательных смесях водолазов и кессонных рабочих впервые применил П. Бер. Гипероксические смеси он использовал для профилактики и лечения декомпрессионных расстройств, возникающих после работы в среде повышенного давления. В дальнейшем содержание кислорода в газовых смесях для дыхания водолазов стали повышать с целью снижения содержания в них инертных газов и сокращения режимов декомпрессии. Были установлены безопасные границы применения высоких концентраций кислорода при кратковременном действии повышенного давления. Однако при глубоководных погружениях и длительном пребывании человека в условиях гипербарии становится очевидным неблагоприятное влияние длительного воздействия и относительно малых величин повышения концентрации кислорода в дыхательной смеси, необходимых для обеспечения газообмена в среде повышенной плотности.
Если до последнего времени при пребывании в газовой среде в условиях гипербарии считалось приемлемым повышение содержания кислорода до 0,35 кг/см2, а при работе в водолазном снаряжении – увеличение содержания кислорода до 1 кг/см2, то в настоящее время стало ясно, что содержание кислорода в среде для дыхания водолазов должно быть максимально приближено к нормальному. Было показано, что в результате гипероксического воздействия при гипербарии как в состоянии покоя, так и особенно во время мышечной деятельности возникают гиперкапния и дыхательный ацидоз вследствие изменения чувствительности дыхательного центра к рН и СО2 в гипероксической среде при повышенном атмосферном давлении, блокирования механизма элиминации СО2 гемоглобином и снижения эффективности кровообращения в легких. Таким образом, один из главных вопросов, требующих своего разрешения в настоящее время, – определение нижней границы токсического действия кислорода, особенно при длительном воздействии среды при повышенном атмосферном давлении. В этом плане перспективным направлением исследований является изучение возможностей ферментных систем и биологических антиоксидантов.
4. Нарушение температурного гомеостаза. Другой физиологический барьер, препятствующий погружению человека на большие глубины, – обеспечение температурного гомеостаза организма при погружении в барокамере, и особенно при выходе водолазов в окружающую толщу воды. В настоящее время известно, что по мере повышения давления зона температурного комфорта все более сужается, по величине приближаясь к температуре тела.
При высоких давлениях в гелиокислородной среде для создания комфортных условий требуется значительно большее повышение окружающей температуры, чем в обычных условиях. В последнее время получены данные о неадекватности теплоощущений человека в гипербарической среде относительно реального теплового состояния организма. Также известно, что зоны комфортных температур значительно изменяются в условиях покоя или работы. Они в большей мере зависят также от уровня энергопродукции человека, т. е. от характера его деятельности.
По мере увеличения барометрического давления или глубины погружения все более актуальной становится проблема оценки истинного теплового состояния организма и оперативного регулирования микроклимата водолазных барокамер.
5. Декомпрессия. Несмотря на более чем столетнюю историю изучения, до настоящего времени эта проблема не решена. Она, по-видимому, будет актуальной до тех пор, пока применяются методы погружения человека, при которых дыхание происходит при давлениях, соответствующих глубине погружения.
Первые исследования возможностей дыхания жидкими смесями были встречены с энтузиазмом, однако до реального использования их человеком еще далеко.
В связи с этим актуальными остаются исследования, направленные на:
– сокращение периодов декомпрессии после пребывания под давлением;
– раннюю диагностику, лечение и профилактику заболеваний, связанных с декомпрессией.
В поисках способов сокращения декомпрессии исследуются механизмы сатурации и десатурации тканей организма при гипербарии с целью разработки режимов плавной, близкой к физиологической кривой десатурации.
Большое внимание уделяется исследованиям возможностей сокращения периода декомпрессии за счет периодического переключения человека на дыхание различными инертными газами.
Представляются актуальными также исследования, направленные на создание аппаратуры, позволяющей следить за ходом индивидуального процесса десатурации с последующей корректировкой режима декомпрессии. Последнее имеет также большое значение для профилактики и ранней диагностики заболеваний, связанных с декомпрессией.
Методы оптимизации реакций организма.
1. Рациональный подбор газовой среды. Как показал В. П. Николаев, важнейшие требования, предъявляемые к искусственной дыхательной среде при различных давлениях, – обеспечение нормального снабжения организма кислородом и нормальная плотность, – могут быть выполнены путем создания газовых смесей того или иного состава.
• В отношении содержания кислорода вопрос решается сравнительно просто. Обычно стремятся сохранить напряжение этого газа в среде, близким к нормальному, лишь немного увеличивая его с учетом возникающих при высоких давлениях среды нарушений диффузионного процесса. Предлагается, правда, корректировать рО2 в соответствии с метаболическими потребностями. На основе принципа максимально возможного уменьшения напряжения функций дыхания и кровообращения была создана математическая модель, позволившая вывести оптимальные концентрации вдыхаемого кислорода в газовой смеси для мышечных нагрузок разной мощности. Полученные таким путем величины рО2 расположились в диапазоне от 0,021 до 0,033 МПа. Более высокое парциальное давление кислорода в среде по расчетам должно выводить показатели легочной вентиляции и гемодинамики из пределов оптимальности. Кроме того, значительная гипероксия (рО2 выше 0,040-0,050 МПа) при длительных экспозициях оказывает известное токсическое действие.
• И снова приходится возвращаться к одной из сложнейших проблем гипербарической физиологии – затруднениям дыхания вследствие повышенной плотности дыхательной среды. Этот барьер к настоящему времени удалось значительно отодвинуть благодаря широкому применению гелиевых смесей. Еще большие преимущества сулит использование в качестве разбавителя кислорода самого легкого газа – водорода. Действительно, при давлении 0,71 МПа человек в условиях дыхания смесью 97 % Н2 и 3 % О2 мог развить максимальную вентиляцию легких более чем в полтора раза большую, чем при дыхании воздухом.
Существенно облегчалось дыхание водолазов и улучшались их эргономические показатели, как было показано в эксперименте «Гидра-4», при использовании смеси 98 % Н2 и 2 % О2 (по сравнению с аналогичной гелиокислородной смесью) под давлением 1,3–2,4 МПа. В частности, снижалось усилие, затрачиваемое на создание определенной скорости потока. В результате, например, при давлении 1,3 МПа испытуемые справлялись с 10-минутной работой мощностью до 225 Вт.
• Теоретически водородно-кислородные смеси должны позволить человеку дышать под огромным давлением – 15 МПа, которое соответствует глубине 1500 м вод. ст. Взрывоопасность таких смесей легко устраняется низкими концентрациями кислорода. Однако исследователи встретились здесь с неприятным сюрпризом: неожиданно выраженным оказалось действие высокого парциального давления водорода на ЦНС. В экспериментах с мышами, экспонированными в барокамере, заполненной водородно-кислородной смесью, у животных при давлении 6–7 МПа появлялся тремор, а при 10,9 МПа – судороги. У обезьян судороги начинались при давлении около 7 МПа.