Статьи
Статьи читать книгу онлайн
Впервые на русском языке выходит книга статей Николы Теслы — известного изобретателя в области электро- и радиотехники, но вместе с тем, пожалуй, самого загадочного ученого конца XIX — начала XX века. Большая часть статей, составивших сборник, была опубликована при жизни Теслы в разных газетах и журналах США, где он прожил много лет.Читатель знакомится с удивительными опытами и рассуждетаями автора, затрагивающими почти все области человеческой деятельности, в которых прослеживается нетрадиционный взгляд на природные явления.Много тайн оставил после себя Н. Тесла, в которые еще предстоит проникнуть пытливым умам.Книга рассчитана на широкий круг читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
На Рис. 7 изображена схема схожего использования динамического индукционного эффекта тока высокой частоты.
Поскольку частота тока, вырабатываемая альтернатором, не настолько высока, как требуется, приходится использовать конденсаторы. Нижеприводимое описание позволит легко понять эту схему. Следует только отметить, что первичный контур p, через который происходит разрядка конденсаторов, охватывает все помещение зала, и выполнен из толстого кабеля с низкой самоиндукцией и сопротивлением. Можно задействовать любое количество вторичных катушек s S S,каждая из которых содержала бы только один слой достаточно толстого провода. Вполне реально подключить около сотни таких катушек таким образом, чтобы каждая из них соответствовала бы определенному периоду и реагировала бы на строго определенные колебания, производимые первичной катушкой. Такую установку я использовал в своей лаборатории с 1892 года, и она неоднократно доставляла удовольствие моим гостям, и при практическом использовании показала себя с самой лучшей стороны. В последнем случае, я имел честь привлечь к участию в экспериментах нескольких членов Ассоциации. Пользуясь случаем, хочу выразить им глубокую благодарность за интерес, проявленный к моей работе, а также выразить признательность Ассоциации за проявленную любезность. С тех нор мой аппарат подвергся весьма значительным изменения в лучшую сторону, и в настоящее время в лаборатории я могу создать индукционное поле такой интенсивности, что катушка диаметром в три фута, при соблюдении соответствующих настроек, выделяет энергию мощностью около одной четверти лошадиной силы вне зависимости от того, в какой точке пространства, ограниченного первичными контурами, она находится. На протяжении последних лет я часто был вынужден демонстрировать эксперименты на публике, однако, при всем моем желании и далее откликаться на подобного рода предложения, необходимость продолжить интенсивную работу, вынуждает меня отвечать отказом. И это принесло свои плоды: медленное, но устойчивое улучшение деталей аппарата, которые, надеюсь, в ближайшем будущем я смогу описать во всех подробностях.
Однако могут возникать и довольно необычные электродинамические эффекты, которые, как я уже отмечал ранее, могут усиливаться при усилении поля в очень малом пространстве. Известно, и это также отмечалось ранее, что если поддерживать электродвижущую силу величиной в несколько тысяч вольт между двумя точками токопроводящего бруска или петли длиной всего лишь в несколько дюймов, то в проводниках, расположенных рядом с ними, возникает электродвижущая сила примерно той же величины. И действительно, я обнаружил, что вполне возможно передавать таким способом электрический разряд в лампе, внутри которой вакуум. Несмотря на то, что необходимая величина электродвижущей силы составляла от десяти до двадцати тысяч вольт, в течение долгого времени я проводил эксперименты в этом направлении с целью добиться получения света новым, более экономичным способом. Но результаты испытаний не оставили сомнений в том, что такой способ освещения требует огромных энергетических затрат. Имея в своем распоряжении только мой аппарат, я сосредоточил свои усилия именно в этом направлении: поиске другого метода передачи электрической энергии. Спустя некоторое время (в июне 1891 г.) профессор Дж. Томсон описал эксперименты, которые были очевидным итогом длительных исследований, и предоставил много новой и интересной информации. Это побудило меня вернуться к изысканиям в этой области и продолжить свои эксперименты. Вскоре все мои усилия были сконцентрированы на получении в малом пространстве индуктивного поля наибольшей интенсивности. Постепенно внося усовершенствования в аппарат, я добился удивительных результатов. Например, если конец тяжелого железного бруска поместить в контур, находящийся под высоким напряжением, то в течение несколько секунд брусок нагревается до высокой температуры. Даже тяжелые куски других металлов нагревались так быстро, как будто их помещали в печь. Когда поместили в контур свернутый в трубочку кусок оловянной пластины, то металл полностью оплавился. Это было сравнимо со вспышкой и не удивительно, что фрикционные потери, сконцентрированные в нем, возможно, достигали величины в десять лошадиных сил. Подобным же образом вели себя и многие другие токопроводящие материалы. А когда в контур поместили стеклянный сосуд, из которого был откачан воздух, то за несколько секунд стекло нагрелось почти до точки плавления.
Когда я впервые наблюдал это удивительное зрелище, я заинтересовался воздействием этого эффекта на живую ткань. Разумеется, я принял все, какие мог меры предосторожности, так как был осведомлен, что контуре диаметром всего несколько дюймов возникает электродвижущая сила величиной более чем в десять тысяч вольт, и такого напряжения более чем достаточно для того, чтобы вызвать ток, разрушающий живую ткань. Это доказывалось еще и тем, что предметы, обладающие сравнительно низкой электропроводностью, быстро нагревались и даже частично разрушались. Можете представить себе мое удивление, когда я обнаружил, что могу поместить руку, или другую часть своего тела в контур и удерживать;ее там без какого-либо ущерба для себя. Побуждаемый желанием сделать новые и полезные наблюдения, я неоднократно с готовностью и бессознательно проводил эксперименты, сопряженные с некоторым риском, которого едва ли можно избежать в лабораторных работах. И хотя я всегда полагал, и пребываю в этой уверенности до сих пор, что никогда не предпринимал ничего более опасного, способного нанести вред моему здоровью, нежели то, что я поместил свою голову в пространство, где действовали столь разрушительные силы. Когда; я сделал это, то ничего не почувствовал, затем повторил еще и еще раз — результат остался прежним. Но я твердо убежден, что проводить такой эксперимент чрезвычайно опасно, и если кто-либо зайдет в своих действиях хотя бы на шаг дальше меня, то вполне может причинить себе серьезный вред. Однако при определенных условиях может происходить то, что в схожей ситуации наблюдалось с вакуумной лампой. Если ее поместить в поле контура, находящегося под высоким напряжением, но слишком длинного, то ток при этом не образуется и лампа остается холодной и практически не потребляет энергию. Но в момент первого же изменения тока, большая часть энергии колебаний устремится к точке потребления. Если в результате каких-либо действий установится электропроводная цепь внутри живой ткани, или костях головы, то это неизбежно приведет к разрушению ткани и к смерти безрассудного экспериментатора. Такой способ убийства, если он окажется востребованным, должен быть абсолютно безболезненным. Однако почему же живая ткань остается неповрежденной в столь агрессивной среде? Можно сказать, что ток не проходит из-за сильной самоиндукции, продуцируемой массой с большой электропроводностью. Но это не аргумент, так как масса металла имеет значительно большую самоиндукцию и при этом нагревается. Тогда можно предположить, что причиной является высокое сопротивление ткани. Но и это не является причиной, поскольку все свидетельствует в пользу того, что живая ткань обладает достаточно хорошей электропроводностью, к тому же тела, обладающие примерно тем же сопротивлением, нагреваются до высокой температуры. Может быть причина безвредности осцилляции в отношение живой ткани кроется в ее в высшей степени специфическом нагревании. Но даже грубая количественная оценка результатов экспериментов, проведенных с другими телами, показывает, что эта точка зрения тоже ошибочна. Единственное правдоподобное объяснение, которое я мог бы предложить, заключается в том, что живая ткань является конденсатором. Только этим можно объяснить отсутствие вредного воздействия. Однако следует отметить, что как только образуется неоднородная цепь, к примеру, если взять в руки полосу металла и таким образом сформировать замкнутый контур, то становится ощутимым прохождение тока через руки и отчетливо проявляются другие физиологические эффекты. Разумеется, самое сильное поле возникает тогда, когда возбуждающий контур образован только одним витком проволоки, за исключением случаев, когда соединения составляют значительную часть всей длины цепи. В этом случае экспериментатору следует установить минимально необходимое количество витков и ясно представлять себе, что он теряет при увеличении количества витков, и что приобретает от увеличения общей длины цепи. Необходимо понимать, что если возбуждающая катушка содержит значительное количество витков и имеет небольшую длину, то в этом случае могут преобладать эффекты электростатической индукции, а также между первым и последним витком может возникнуть большая разность потенциалов — сто тысяч вольт и более. Однако последний эффект присутствует всегда, даже если задействуется только один виток.