Разведка далеких планет
Разведка далеких планет читать книгу онлайн
Мечта каждого астронома – открыть новую планету. Раньше это случалось редко: одна-две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких – по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.
Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Оставим пока в стороне явление дифракции света на зрачке глаза, а также зернистость сетчатки, которые даже при отсутствии атмосферы не позволили бы нам различить реальный диск звезды или воспринять далекую звезду как точку исчезающе малого углового размера. Оба эти явления – дифракция и «пиксельная» структура сетчатки – размывают изображение звезды, но сами по себе в силу своей статичности не вызывают колебаний яркости и цвета. Однако и в том случае, если бы острота нашего зрения была фантастически высокой, мы, наблюдая сквозь атмосферу, не смогли бы различить реальные диски звезд. Дело в том, что за время одного «кадра», воспринимаемого нашим зрением (около 0,05 с), быстрое атмосферное дрожание почти точечного изображения звезды создает вместо него «кляксу», угловой размер которой зависит от состояния атмосферы в месте наблюдения и обычно составляет от 2″ до 5″. Впрочем, наш глаз не различает столь малых углов. Дифракция на зрачке и неоднородность сетчатки снижают угловое разрешение нашего ночного зрения до 2–3 минут дуги, то есть примерно до 150″. Так что звезду-«кляксу» размером 2–5″ наш глаз воспринимает как точку, но низкочастотные колебания ее яркости глаз замечает. Они-то и служат причиной мерцания звезд.
Все это понятно, но почему же все-таки звезды мерцают, а планеты – нет, почему при наблюдении ночного неба невооруженным глазом изображение звезды дрожит, а планета выглядит более стабильной, почти неизменной? Разумеется, преломление света в атмосфере не зависит от того, каков его источник: звезда или планета.
Таблица 7.1
Угловой диаметр планет, доступных по своему блеску для наблюдения невооруженным глазом
Причина видимого различия звезд и планет в том, что угловой размер любой из ярких планет значительно больше углового размера атмосферных изображений звезд. Это видно из данных табл. 7.1, причем нужно учитывать, что меньшее значение диаметра относится к конфигурации (рис. 7.2), в которой планета не наблюдается. Для внешних планет – Марса, Юпитера и Сатурна – это эпоха соединения, когда планета располагается на небе вблизи Солнца. Для внутренних планет – Меркурия и Венеры – это эпоха верхнего соединения, когда планета также располагается вблизи Солнца, находясь за ним. Обычно внешние планеты наблюдаются вблизи их противостояния и поэтому имеют максимальный угловой размер. А внутренние планеты (особенно Меркурий) видны лишь в эпоху наибольшей элонгации, когда их диаметр составляет около половины от максимального, точнее 8–9″ у Меркурия и 26″ у Венеры. Не беря в расчет Меркурий (немногие его когда-либо видели!), можно заключить, что диски ярких планет видны под углом не менее 20″, что значительно превосходит размер атмосферных изображений звезд.
Рис. 7.2. Конфигурации планет, то есть их характерные положения относительно Земли и Солнца. По отношению к земному наблюдателю планета на внешней орбите может располагаться в соединении или противостоянии с Солнцем, а также в восточной или западной квадратурах. Планета на внутренней орбите может располагаться в нижнем (1) или верхнем (3) соединениях, а также в наибольшей восточной (4) или западной (2) элонгациях.
Таким образом, мы наблюдаем звезду сквозь очень узкий воздушный «канал», оптические свойства которого постоянно меняются из-за турбулентного движения воздуха. А диск планеты видим сразу через множество подобных каналов, свойства которых меняются хаотически, несогласованно. При этом, однако, угловой размер планет меньше разрешающей способности глаза, так что изображение планет, как и изображения звезд, мы воспринимаем в виде точек.
Хотя глазу планета все равно кажется точкой, изображение диска планеты можно представить как тесно прижатые друг к другу изображения множества звезд. Например, при угловом размере изображений звездных дисков 3″ на диске ночных планет (Марс, Юпитер, Сатурн) в эпоху противостояния их поместится около 100. Наше зрение суммирует хаотическое мигание каждой части планетного диска, при этом флуктуации яркости этого суммарного изображения планеты усредняются и оказываются значительно ниже, чем у изображений отдельных звезд. Поэтому нам кажется, что планеты практически не мерцают. Как видим, рождественская песенка «Twinkle, twinkle, little star…» очень точно определяет причину мерцания звезд: потому и twinkle, что little.
Любопытная получается картина: астрономы-профессионалы проклинают атмосферу за то, что она мешает им получать четкие изображения космических объектов, а начинающему любителю астрономии атмосфера, оказывается, помогает отличить планету от звезды. Не будь атмосферы, звезды, как и планеты, не мерцали бы.
Кстати, в эпоху зарождения радиоастрономии эта наука тоже переживала свой «любительский» период и тоже использовала эффект мерцания. В начале 1960-х гг. было известно несколько «радиозвезд» (как позже выяснилось – квазаров). Их выявили, наблюдая покрытия радиоисточников Луной. Но в тех местах на небе, где Луна не гуляет, радиотелескопы того времени не могли отличить точечный источник от протяженного, поскольку имели очень плохое угловое разрешение (как зрение весьма близорукого человека). В те годы новый метод поиска «радиозвезд» разработал Энтони Хьюиш из Кавендишской лаборатории Кембриджского университета (Англия). Он использовал аналогию: обычные звезды мерцают, потому что их свет проходит через неспокойные слои атмосферы, значит, радиозвезды должны мерцать, поскольку на пути к Земле радиоволны проходят сквозь неоднородный солнечный ветер. Хьюиш заполнил антеннами поле площадью 2 га и начал систематический обзор всего неба в поиске мерцающих радиозвезд, которые могли бы оказаться квазарами. Каждый день прибор выдавал 30-метровую бумажную ленту информации, анализом которой занималась студентка Хьюиша – Джоселин Белл. Она заметила, что один из радиоисточников мерцал довольно необычно – строго периодически. Так были открыты радиопульсары, оказавшиеся нейтронными звездами! В те годы на Рождество астрономы пели: «Twinkle, twinkle, neutron star…».
Кстати, если бы зрение человека оказалось значительно более чувствительным к слабым потокам света, например таким, как у ночного хищника совы, то мы без труда могли бы видеть Уран (+5,5 m), а может быть, и Нептун (+7,8 m). А вот смогли бы мы тогда догадаться, что это планеты? Из-за большого расстояния от Солнца угловая скорость их перемещения относительно звезд очень мала, и это затруднило бы выяснение их истинной природы. А как же метод мерцаний? Ведь планеты не должны мерцать? Но Уран и Нептун как раз мерцают! Их угловой диаметр составляет 2–4″, что близко к типичному размеру изображения звезды на уровне моря. Так что народная примета «звезды мерцают, а планеты – нет» отражает не только возможности нашего зрения, но и свойства земной атмосферы.
Обсуждая видимость звезд и больших планет, мы чуть не забыли об основной теме этой главы, о планетах-карликах. А можно ли их заметить невооруженным глазом и отличить от звезд? Заметить астероид невооруженным глазом, да еще в городе, практически невозможно. Даже самый яркий из них – Весту – до изобретения телескопа астрономы не отмечали как планету, хотя наиболее зоркие из звездочетов, возможно, иногда замечали самые яркие астероиды (табл. 7.2) и даже планету Уран (+5,5 m), принимая их за тусклые звезды. Сегодня мы без труда можем в эпоху противостояния увидеть их в простой бинокль (табл. 3.2). Но ни Уран, ни яркие астероиды не были отождествлены как члены Солнечной системы до конца XVIII в., пока не появились достаточно мощные телескопы и подробные звездные каталоги. Из-за малого углового размера астероиды и мерцают как звезды, и с помощью обычного наземного телескопа (без адаптивной оптики) их диски не отличишь от звезд. Прав был Гершель, когда назвал их «астероидами», то есть звездообразными. Мы не говорим больше «малая планета», поскольку ничего общего у астероидов с планетами нет.