Пинбол-эффект. От византийских мозаик до транзисторов и другие путешествия во времени
Пинбол-эффект. От византийских мозаик до транзисторов и другие путешествия во времени читать книгу онлайн
Эта книга — об удивительной и захватывающей истории научно-технического прогресса. На множестве примеров Джеймс Бёрк доступно и наглядно показывает, по какой замысловатой траектории порой движется наука и как открытия вековой и более давности приводят к самым современным изобретениям. От фонтанов Версаля до карбюратора, от пряностей до авиабомбы, от бритвенных лезвий до квазаров — автор скрупулезно выстраивает увлекательные цепочки и прослеживает взаимосвязи во времени и пространстве между предметами, явлениями, событиями и человеческими свершениями.
Книга адресована широкому кругу читателей, которые неравнодушны к истории научного познания.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Тем временем, Эпплтон отмечал, что иногда передаваемый сигнал как будто затухает. Это случалось, как правило, ночью и в периоды, когда на Солнце появлялись пятна. Было очевидно, что солнечное излучение выбивает электроны из атомов газа верхних слоев атмосферы и таким образом ионизирует их. А поскольку наиболее часто потери радиосигнала приходились на пики одиннадцатилетнего цикла солнечной активности, логично было предположить, что когда Солнце активно, оно бомбардирует Землю повышенными дозами излучения, что и вызывает нарушение радиопередачи.
Эта теория имела один необъяснимый изъян. Гесс и другие воздухоплаватели установили, что в высоких слоях атмосферы уровень ионизации постоянен днем и ночью. Таким образом, помимо Солнца, существовал другой источник постоянного ионизирующего излучения. В 1933 году инженер компании «Эй-ти энд ти» Карл Янский, который искал причину нарушений радиопередачи на новейших комфортабельных океанских лайнерах 237 — 8 , 15 , обнаружил, что на определенных частотах постоянные помехи дает какое-то излучение, исходящее от всего Млечного Пути. Четыре года спустя никому неизвестный радиомеханик Грот Ребер из Иллинойса смастерил у себя во дворе антенну из мелкоячеистой сетки и с ее помощью сделал первую радиокарту неба. Выяснилось, что излучение шло из всей Вселенной. Так родилась радиоастрономия, а «лучи Гесса» стали «космическими лучами».
С одиннадцатилетним солнечным циклом была связана еще одна интересная особенность. В полном соответствии с ним, циклически изменялась погода. В начале 1930-х годов молодой американец Джон Мокли, преподаватель физики из колледжа Урсинус, решил проанализировать эту закономерность с экспериментальными данными в руках. Еще будучи студентом Университета Джона Хопкинса в Балтиморе, Мокли каждое лето на каникулах работал в метеослужбе Национального бюро стандартов. Там он узнал, что несмотря на более чем столетнюю историю сбора данных прогнозов погоды в США, их никто никогда не анализировал. По мысли Мокли, эти цифры могли дать основу для долгосрочных погодных моделей, которые, возможно, помогли бы в предсказании засух, затяжных дождей или других разрушительных для экономики погодных феноменов.
На обработку такого массива данных ушло бы колоссальное количество времени, если бы не нашелся более быстрый способ для таких громоздких вычислений. В 1934 году Мокли приехал в Чикаго в Институт Бартольда, директор которого дружил с его отцом. Там он наблюдал работу физиков, занятых исследованием космического излучения. Для регистрации частиц физики использовали вакуумные трубки, которые очень быстро реагировали на поступающий сигнал и регистрировали до ста тысяч частиц в секунду. Этот метод, понял Мокли, можно приспособить для вычислений в прогнозировании погоды. Однако разразившаяся Вторая мировая война переключила его внимание на темы, весьма далекие от погоды.
В начале войны дела в военной промышленности союзников продвигались слишком уж хорошо. Проектно-конструкторские бюро разрабатывали новое оружие почти каждую неделю. Это были новые типы взрывчатки, новые винтовки, прицелы, боезаряды и многое другое. Новые технологии еще больше усложняли и без того непростой процесс выстрела, который зависит далеко не только от нажатия на курок.
При выстреле из любого оружия на точность попадания в цель влияет уму непостижимое множество факторов: тип оружия, тип патрона, тип метательного взрывчатого вещества, тип ствола, скорость сгорания взрывчатого вещества, тип капсюля, тип гильзы, давление газов в стволе, давление газов на выходе из ствола, сила отдачи, скорость пули, трение пули на выходе из ствола, состояние канала ствола, деформация ствола при взрыве, плотность воздуха, наличие пламегасителя, сопротивление воздуха при полете пули, ударные волны, вызванные пулей, трение пули о гильзу, форма пули, угол траектории, скорость вращения пули, масса пули, температура воздуха, направление и скорость ветра, влажность, сила тяжести, высота цели, тип цели, вид поражения и угол поражения. Кроме того, на большинство этих факторов влиял рельеф местности, где производилась стрельба, вращение Земли и положение Луны!
Учитывая все эти сложности, очевидно, что для правильного ведения огня требовался точный математический расчет. Данные предоставлялись в виде небольшого буклетика, который прилагался к каждой винтовке, автомату или орудию. В нем приводились таблицы с информацией о том, как ведет себя оружие при всех возможных условиях. Для оружия, производившегося в США, такие таблицы рассчитывались группой женщин-математиков в Баллистических лабораториях 238 — 118 в Абердине, в штате Мэриленд.
Перед ними стояли нечеловеческие задачи. Для расчета одной типовой траектории требовалось произвести семьсот пятьдесят вычислений, а в каждую таблицу входило более трех тысяч траекторий. Женщинам, на вооружении которых были только механические калькуляторы, требовался месяц работы, чтобы рассчитать одну такую таблицу, а в 1944 году в лабораторию приходило по шесть новых запросов на расчеты в день. Чтобы оружие союзников успешно поражало цели, требовался более эффективный способ расчетов.
В 1942 году несколько женщин из лаборатории были отправлены на курсы в Электротехническую школу Мура в Филадельфии, где преподавал Джон Мокли (одна из девушек-математиков вышла в итоге за него замуж). Мокли пришло в голову, что этому арифметическому безумию, возможно, удалось бы положить конец с помощью некой машины, которая могла бы прибавлять, отнимать, умножать и делить, а затем сохранять результаты в памяти для дальнейших вычислений. Ключевой функцией было сохранение в память, поскольку большинство ошибок в расчетах случалось именно на этапе извлечения заранее подсчитанных данных для следующей стадии вычислений. Машина, которую задумал Мокли, должна была работать очень быстро. Он уже использовал подобное устройство в своих расчетах погоды. Это были вакуумные трубки ученых-физиков, которые могли регистрировать попадание ста тысяч космических частиц в секунду.
В 1942 году он направил военному начальству меморандум с победоносным заголовком «Использование высокоскоростных вакуумных трубок для математических расчетов», но начальство проигнорировало документ или попросту потеряло его. В 1943-м запрос был подан повторно, и на этот раз его приняли к рассмотрению. Проект стартовал, и вместе с Мокли за него взялся его коллега Джон Преспер Эккерт. Результатом стал Электронный числовой интегратор и калькулятор (ЭНИАК [18]), впервые пущенный в действие в школе Мура в 1946 году, увы, слишком поздно, чтобы помочь вычислениям для нужд фронта.
Машина обошлась в восемьсот тысяч долларов и имела гигантские размеры: тридцать метров в длину, три метра в высоту и метр в глубину. В ее основе было около восемнадцати тысяч вакуумных трубок, а потребляла она 174 киловатта. Ходила шутка, что, когда включался ЭНИАК, огни Филадельфии меркли.
Процедура включения аппарата перед каждым вычислением была трудоемкой и долгой, поэтому операторы прозвали его «адской машиной». Однако сколь ни громоздким был ЭНИАК, он повлияет на жизнь каждого человека на Земле. А пока — нудные подробности. В конструкции применялись вакуумные трубки, сгруппированные по десять штук, группы соответствовали единицам, десяткам, сотням и так далее. На группы подавались электронные импульсы. В каждой группе определенное число импульсов включало такое же количество трубок. То есть четыре импульса в «единицы» включало четыре трубки, а два импульса в «десятки» — две. Таким образом в память заносилось число 24. Чтобы прибавить к нему 15, нужно было включить еще одну трубку в «десятках» и еще пять в «единицах». Для получения итоговой суммы трубки выключались и подсчитывалось число импульсов для полного их обнуления. В нашем случае это три импульса в «десятках» и девять в «единицах», то есть 39. Время прохождения каждого импульса составляло 0,02 миллисекунды.